Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

Quantum physics

Discipline
Institution
Publication Year
Publication

Articles 61 - 83 of 83

Full-Text Articles in Physics

Probing The Quantum Coherence Of A Nanomechanical Resonator Using A Superconducting Qubit: Ii. Implementation, M. P. Blencowe, A. D. Armour Sep 2008

Probing The Quantum Coherence Of A Nanomechanical Resonator Using A Superconducting Qubit: Ii. Implementation, M. P. Blencowe, A. D. Armour

Dartmouth Scholarship

We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled …


Quantum Analysis Of A Nonlinear Microwave Cavity-Embedded Dc Squid Displacement Detector, P. D. Nation, M. P. Blencowe, E. Buks Sep 2008

Quantum Analysis Of A Nonlinear Microwave Cavity-Embedded Dc Squid Displacement Detector, P. D. Nation, M. P. Blencowe, E. Buks

Dartmouth Scholarship

We carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector, comprising a SQUID with mechanically compliant loop segment, which is embedded in a microwave transmission line resonator. The SQUID is approximated as a nonlinear current-dependent inductance, inducing an external flux tunable nonlinear Duffing self-interaction term in the microwave resonator mode equation. Motion of the compliant SQUID loop segment is transduced inductively through changes in the external flux threading SQUID loop, giving a ponderomotive radiation pressure-type coupling between the microwave and mechanical resonator modes. Expressions are derived for the detector signal response and noise, …


Advantages Of Randomization In Coherent Quantum Dynamical Control, Lea F. Santos, Lorenza Viola Aug 2008

Advantages Of Randomization In Coherent Quantum Dynamical Control, Lea F. Santos, Lorenza Viola

Dartmouth Scholarship

Control scenarios have been identified where the use of randomized design may substantially improve the performance of dynamical decoupling methods (Santos and Viola 2006 Phys. Rev. Lett. 97 150501). Here, by focusing on the suppression of internal unwanted interactions in closed quantum systems, we review and further elaborate on the advantages of randomization at long evolution times. By way of illustration, special emphasis is devoted to isolated Heisenberg chains of coupled spin-1/2 particles. In particular, for nearest-neighbor interactions, two types of decoupling cycles are contrasted: inefficient averaging, whereby the number of control actions increases exponentially with the system size, and …


Quantum Pseudorandomness From Cluster-State Quantum Computation, Winton G. Brown, Yaakov S. Weinstein, Lorenza Viola Apr 2008

Quantum Pseudorandomness From Cluster-State Quantum Computation, Winton G. Brown, Yaakov S. Weinstein, Lorenza Viola

Dartmouth Scholarship

We show how to efficiently generate pseudorandom states suitable for quantum information processing via cluster-state quantum computation. By reformulating pseudorandom algorithms in the cluster-state picture, we identify a strategy for optimizing pseudorandom circuits by properly choosing single-qubit rotations. A Markov chain analysis provides the tool for analyzing convergence rates to the Haar measure and finding the optimal single-qubit gate distribution. Our results may be viewed as an alternative construction of approximate unitary 2-designs.


Shape Invariance And The Exactness Of Quantum Hamilton-Jacobi Formalism, Charles Cherqui, Yevgeny Binder, Asim Gangopadhyaya Sep 2007

Shape Invariance And The Exactness Of Quantum Hamilton-Jacobi Formalism, Charles Cherqui, Yevgeny Binder, Asim Gangopadhyaya

Physics: Faculty Publications and Other Works

Quantum Hamilton-Jacobi Theory and supersymmetric quantum mechanics (SUSYQM) are two parallel methods to determine the spectra of a quantum mechanical systems without solving the Schr ̈odinger equation. It was recently shown that the shape invariance, which is an integrability condition in SUSYQM formalism, can be utilized to develop an iterative algorithm to determine the quantum momentum functions. In this paper, we show that shape invariance also suffices to determine the eigenvalues in Quantum Hamilton-Jacobi Theory.


The Development Of A Quantum Dot Solar Concentrator, Brenda Rowan Sep 2007

The Development Of A Quantum Dot Solar Concentrator, Brenda Rowan

Doctoral

The aim of this study was to investigate the feasibility of Quantum Dot Solar Concentrators (QDSCs). Quantum Dots offer the advantages of having broad absorption specr4a, tunable emission and improved stability. A range of Cadmium Selenide/|Zince Sulphide Quantum Dots were characterized in solution and composite form using time-resolved and steady state spectroscopie techniques and the stability of the composite samples was investigated over a 6 month period. A number of matrix materials were compared and the most suitable type for fabrication of QDSCs were identified. Techniques for fabrication and characterization of QDSCs were developed and a range of different QDSC …


Quantum Analysis Of A Linear Dc Squid Mechanical Displacement Detector, M. P. Blencowe, E. Buks Jul 2007

Quantum Analysis Of A Linear Dc Squid Mechanical Displacement Detector, M. P. Blencowe, E. Buks

Dartmouth Scholarship

We provide a quantum analysis of a dc SQUID mechanical displacement detector within the subcritical Josephson current regime. A segment of the SQUID loop forms the mechanical resonator and motion of the latter is transduced inductively through changes in the flux threading the loop. Expressions are derived for the detector signal response and noise, which are used to evaluate the position and force detection sensitivity. We also investigate cooling of the mechanical resonator due to detector back reaction.


Strokes Of Existence: The Connection Of All Things, Mari Gorman Jan 2007

Strokes Of Existence: The Connection Of All Things, Mari Gorman

Graduate Student Publications and Research

Acted or real—and all life is real whether one is acting or not—the common denominator and consistent, ubiquitous reality of life and all behavior is that it manifests in the form of relationships on all scales. But what is a relationship? Until now, the answer to this question has not been sufficiently known. As a result of many years of empirical research that began with the aim of discovering what is going on in a gifted actor when s/he is playing a character that can be observed and experienced as a living, intuitive being, and based on the knowledge that …


Decoherence And Recoherence In A Vibrating Rf Squid, Eyal Buks, M. P. Blencowe Nov 2006

Decoherence And Recoherence In A Vibrating Rf Squid, Eyal Buks, M. P. Blencowe

Dartmouth Scholarship

We study an rf SQUID, in which a section of the loop is a freely suspended beam that is allowed to oscillate mechanically. The coupling between the rf SQUID and the mechanical resonator originates from the dependence of the total magnetic flux threading the loop on the displacement of the resonator. Motion of the latter affects the visibility of Rabi oscillations between the two lowest energy states of the rf SQUID. We address the feasibility of experimental observation of decoherence and recoherence, namely decay and rise of the visibility, in such a system.


Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio Oct 2006

Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio

Dartmouth Scholarship

The search for non-relativistic deviations from Newtonian gravitation can lead to new phenomena signalling the unification of gravity with the other fundamental interactions. Various recent theoretical frameworks indicate a possible window for non-Newtonian forces with gravitational coupling strength in the micrometre range. The major expected background in the same range is attributable to the Casimir force or variants of it if dielectric materials, rather than conducting ones, are considered. Here we review the measurements of the Casimir force performed so far in the micrometre range and how they determine constraints on non-Newtonian gravitation, also discussing the dominant sources of false …


Generalized Entanglement As A Natural Framework For Exploring Quantum Chaos, Y. S. Weinstein, L Viola Oct 2006

Generalized Entanglement As A Natural Framework For Exploring Quantum Chaos, Y. S. Weinstein, L Viola

Dartmouth Scholarship

We demonstrate that generalized entanglement (Barnum et al., Phys. Rev. A, 68 (2003) 032308) provides a natural and reliable indicator of quantum chaotic behavior. Since generalized entanglement depends directly on a choice of preferred observables, exploring how generalized entanglement increases under dynamical evolution is possible without invoking an auxiliary coupled system or decomposing the system into arbitrary subsystems. We find that, in the chaotic regime, the long-time saturation value of generalized entanglement agrees with random matrix theory predictions. For our system, we provide physical intuition into generalized entanglement within a single system by invoking the notion of extent …


Enhanced Convergence And Robust Performance Of Randomized Dynamical Decoupling, Lea F. Santos, Lorenza Viola Oct 2006

Enhanced Convergence And Robust Performance Of Randomized Dynamical Decoupling, Lea F. Santos, Lorenza Viola

Dartmouth Scholarship

We demonstrate the advantages of randomization in coherent quantum dynamical control. For systems which are either time-varying or require decoupling cycles involving a large number of operations, we find that simple randomized protocols offer superior convergence and stability as compared to deterministic counterparts. In addition, we show how randomization may allow us to outperform purely deterministic schemes at long times, including combinatorial and concatenated methods. General criteria for optimally interpolating between deterministic and stochastic design are proposed and illustrated in explicit decoupling scenarios relevant to quantum information storage.


Multivalued Logic, Neutrosophy And Schrodinger Equation, Florentin Smarandache, Victor Christianto Dec 2005

Multivalued Logic, Neutrosophy And Schrodinger Equation, Florentin Smarandache, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

This book was intended to discuss some paradoxes in Quantum Mechanics from the viewpoint of Multi-Valued-logic pioneered by Lukasiewicz, and a recent concept Neutrosophic Logic. Essentially, this new concept offers new insights on the idea of ‘identity’, which too often it has been accepted as given. Neutrosophy itself was developed in attempt to generalize Fuzzy-Logic introduced by L. Zadeh. While some aspects of theoretical foundations of logic are discussed, this book is not intended solely for pure mathematicians, but instead for physicists in the hope that some of ideas presented herein will be found useful. The book is motivated by …


Dynamics Of A Nanomechanical Resonator Coupled To A Superconducting Single-Electron Transistor, M. P. Blencowe, J. Imbers, A. D. Armour Nov 2005

Dynamics Of A Nanomechanical Resonator Coupled To A Superconducting Single-Electron Transistor, M. P. Blencowe, J. Imbers, A. D. Armour

Dartmouth Scholarship

We present an analysis of the dynamics of a nanomechanical resonator coupled to a superconducting single-electron transistor (SSET) in the vicinity of Josephson quasi-particle (JQP) and double Josephson quasi-particle (DJQP) resonances. For weak coupling and wide separation of dynamical timescales, we find that for either superconducting resonances the dynamics of the resonator are given by a Fokker–Planck equation, i.e. the SSET behaves effectively as an equilibrium heat bath, characterized by an effective temperature, which also damps the resonator and renormalizes its frequency. Depending on the gate and drain–source voltage bias points with respect to the superconducting resonance, the SSET can …


The Dyad Theory Of Classical And Quantum Physics, Preston Jones Feb 2005

The Dyad Theory Of Classical And Quantum Physics, Preston Jones

Publications

The 4-space equations of hydrodynamics, electrodynamics, and quantum mechanics are developed using the dyad calculus. Gravity is found to couple hydrodynamics, electrodynamics, and quantum mechanics through the 4- space metric and differential operator. Expanding the 4-space equations of electrodynamics a time varying metric is shown to dissipate electromagnetic energy.


Shape Invariance In Supersymmetric Quantum Mechanics And Its Application To Selected Special Functions Of Modern Physics, Chad Husko, Brenton Knuffman, Asim Gangopadhyaya, Jeffrey Mallow Feb 2005

Shape Invariance In Supersymmetric Quantum Mechanics And Its Application To Selected Special Functions Of Modern Physics, Chad Husko, Brenton Knuffman, Asim Gangopadhyaya, Jeffrey Mallow

Physics: Faculty Publications and Other Works

We applied the methods of supersymmetric quantum mechanics to differential equations that generate well-known special functions of modern physics. This application provides new insight into these functions and generates recursion relations among them. Some of these recursion relations are apparently new (or forgotten), as they are not available in commonly used texts and handbooks. This method can be easily extended to explore other special functions of modern physics.


Exactly Solvable Systems And The Quantum Hamilton Jacobi Formalism, C. Rasinariu, John J. Dykla, Asim Gangopadhyaya, Jeffrey Mallow Jan 2005

Exactly Solvable Systems And The Quantum Hamilton Jacobi Formalism, C. Rasinariu, John J. Dykla, Asim Gangopadhyaya, Jeffrey Mallow

Physics: Faculty Publications and Other Works

We connect Quantum Hamilton-Jacobi Theory with supersymmetric quantum mechanics (SUSYQM). We show that the shape invariance, which is an integrability condition of SUSYQM, translates into fractional linear relations among the quantum momentum functions.


Casimir Force Between Eccentric Cylinders, D. A. R. Dalvit, F. C. Lombardo, F. D D. Mazzitelli, R Onofrio Aug 2004

Casimir Force Between Eccentric Cylinders, D. A. R. Dalvit, F. C. Lombardo, F. D D. Mazzitelli, R Onofrio

Dartmouth Scholarship

We consider the Casimir interaction between a cylinder and a hollow cylinder, both conducting, with parallel axis and slightly different radii. The Casimir force, which vanishes in the coaxial situation, is evaluated for both small and large eccentricities using the proximity approximation. The cylindrical configuration offers various experimental advantages with respect to the parallel planes or the plane-sphere geometries, leading to favourable conditions for the search of extra-gravitational forces in the micrometer range and for the observation of finite-temperature corrections.


Mutually Unbiased Binary Observable Sets On N Qubits, Jay Lawrence, Časlav Brukner, Anton Zeilinger Feb 2002

Mutually Unbiased Binary Observable Sets On N Qubits, Jay Lawrence, Časlav Brukner, Anton Zeilinger

Dartmouth Scholarship

The Pauli operators (tensor products of Pauli matrices) provide a complete basis of operators on the Hilbert space of N qubits. We prove that the set of 4N−1 Pauli operators may be partitioned into 2N+1 distinct subsets, each consisting of 2N−1 internally commuting observables. Furthermore, each such partitioning defines a unique choice of 2N+1 mutually unbiased basis sets in the N-qubit Hilbert space. Examples for 2 and 3 qubit systems are discussed with emphasis on the nature and amount of entanglement that occurs within these basis sets.


Exact Solutions Of The Schroedinger Equation: Connection Between Supersymmetric Quantum Mechanics And Spectrum Generating Algebras, Asim Gangopadhyaya, Jeffrey Mallow, C. Rasinariu, Uday P. Sukhatne Apr 2001

Exact Solutions Of The Schroedinger Equation: Connection Between Supersymmetric Quantum Mechanics And Spectrum Generating Algebras, Asim Gangopadhyaya, Jeffrey Mallow, C. Rasinariu, Uday P. Sukhatne

Physics: Faculty Publications and Other Works

Using supersymmetric quantum mechanics, one can obtain analytic expressions for the eigenvalues and eigenfunctions for all nonrelativistic shape invariant Hamiltonians. These Hamiltonians also possess spectrum generating algebras and are hence solvable by an independent, group theoretical method. In this paper, we demonstrate the equivalence of the two methods of solution, and review related progress in this field.


Universal Quantum Limits On Single-Channel Information, Entropy, And Heat Flow, Miles Blencowe, Vincenzo Vitelli Nov 2000

Universal Quantum Limits On Single-Channel Information, Entropy, And Heat Flow, Miles Blencowe, Vincenzo Vitelli

Dartmouth Scholarship

We show that the recently discovered universal upper bound on the thermal conductance of a single channel comprising particles obeying arbitrary fractional statistics is in fact a consequence of a more general universal upper bound, involving the averaged entropy and energy currents of a single channel connecting heat reservoirs with arbitrary temperatures and chemical potentials. The latter upper bound in turn leads, via Holevo's theorem, to a universal (i.e., statistics independent) upper bound on the optimum capacity for classical information transmission down a single, wideband quantum channel.


Quantum Mechanics Of Multi-Prong Potentials, Asim Gangopadhyaya, A Pagnamenta, Uday P. Sukhatme Jan 1995

Quantum Mechanics Of Multi-Prong Potentials, Asim Gangopadhyaya, A Pagnamenta, Uday P. Sukhatme

Physics: Faculty Publications and Other Works

We describe the bound state and scattering properties of a quantum mechanical particle in a scalar N-prong potential. Such a study is of special interest since these situations are intermediate between one and two dimensions. The energy levels for the special case of N identical prongs exhibit an alternating pattern of non-degeneracy and (N−1) fold degeneracy. It is shown that the techniques of supersymmetric quantum mechanics can be used to generate new solutions. Solutions for prongs of arbitrary lengths are developed. Discussions of tunneling in N-well potentials and of scattering for piecewise constant potentials are given. Since our treatment is …


Wannier-Stark Localization In Modulation-Doped Multiple-Quantum-Well Structures, Roger H. Yu Feb 1994

Wannier-Stark Localization In Modulation-Doped Multiple-Quantum-Well Structures, Roger H. Yu

All Faculty Scholarship for the College of the Sciences

The external-electric-field effect and the doping effect on a modulation-doped finite-length GaAs/AlxGa1−xAs superlattice have been studied by solving the Schrödinger-Kohn-Sham equation and the Poisson equation self-consistently. In the heavy-doping case, the external electric field makes electrons sequentially tunnel through several potential barriers, and accumulates electrons near one side of the finite-length superlattice. The collective motion of the electrons results in high- and low-field domains in the superlattice. We have found that Wannier-Stark localization exists only in the high-field domain, and that the electronic states are not evenly spaced. The electric-field-induced (doping induced) depopulation (population) of subbands …