Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

Polarization

Discipline
Institution
Publication Year
Publication

Articles 31 - 60 of 84

Full-Text Articles in Physics

Quantum And Classical Optics–Emerging Links, Joseph H. Eberly, Xiao-Feng Qian, Asma Al Qasimi, Hazrat Ali, M. A. Alonso, R Gutiérrez-Cuevas, Bethany Little, John C. Howell, Tanya Malhotra, A. N. Vamivakas May 2016

Quantum And Classical Optics–Emerging Links, Joseph H. Eberly, Xiao-Feng Qian, Asma Al Qasimi, Hazrat Ali, M. A. Alonso, R Gutiérrez-Cuevas, Bethany Little, John C. Howell, Tanya Malhotra, A. N. Vamivakas

Mathematics, Physics, and Computer Science Faculty Articles and Research

Quantum optics and classical optics are linked in ways that are becoming apparent as a result of numerous recent detailed examinations of the relationships that elementary notions of optics have with each other. These elementary notions include interference, polarization, coherence, complementarity and entanglement. All of them are present in both quantum and classical optics. They have historic origins, and at least partly for this reason not all of them have quantitative definitions that are universally accepted. This makes further investigation into their engagement in optics very desirable. We pay particular attention to effects that arise from the mere co-existence of …


Laser Pulsing In Linear Compton Scattering, G. A. Krafft, E. Johnson, K. Deitrick, B. Terzić, R. Kelmar, T. Hodges, J. R. Delayen Jan 2016

Laser Pulsing In Linear Compton Scattering, G. A. Krafft, E. Johnson, K. Deitrick, B. Terzić, R. Kelmar, T. Hodges, J. R. Delayen

Physics Faculty Publications

Previous work on calculating energy spectra from Compton scattering events has either neglected considering the pulsed structure of the incident laser beam, or has calculated these effects in an approximate way subject to criticism. In this paper, this problem has been reconsidered within a linear plane wave model for the incident laser beam. By performing the proper Lorentz transformation of the Klein-Nishina scattering cross section, a spectrum calculation can be created which allows the electron beam energy spread and emittance effects on the spectrum to be accurately calculated, essentially by summing over the emission of each individual electron. Such an …


Shifting The Quantum-Classical Boundary: Theory And Experiment For Statistically Classical Optical Fields, Xiao-Feng Qian, Bethany Little, John C. Howell, Joseph H. Eberly Jun 2015

Shifting The Quantum-Classical Boundary: Theory And Experiment For Statistically Classical Optical Fields, Xiao-Feng Qian, Bethany Little, John C. Howell, Joseph H. Eberly

Mathematics, Physics, and Computer Science Faculty Articles and Research

The growing recognition that entanglement is not exclusively a quantum property, and does not even originate with Schrödinger’s famous remark about it [Proc. Cambridge Philos. Soc. 31, 555 (1935)], prompts the examination of its role in marking the quantum-classical boundary. We have done this by subjecting correlations of classical optical fields to new Bell-analysis experiments and report here values of the Bell parameter greater than ℬ=2.54. This is many standard deviations outside the limit ℬ=2 established by the Clauser–Horne–Shimony–Holt Bell inequality [Phys. Rev. Lett. 23, 880 (1969)], in agreement with our theoretical classical prediction, and not far from the Tsirelson …


Room Temperature Optical Anisotropy Of A Lamno3 Thin-Film Induced By Ultra-Short Pulse Laser, Purevdorj Munkhbaatar, Zsolt Marton, Baatarchuluun Tsermaa, Woo Seok Choi, Sung S. Ambrose Seo, Jin Seung Kim, Naoyuki Nakagawa, Harold Y. Hwang, Ho Nyung Lee, Kim Myung-Whun Mar 2015

Room Temperature Optical Anisotropy Of A Lamno3 Thin-Film Induced By Ultra-Short Pulse Laser, Purevdorj Munkhbaatar, Zsolt Marton, Baatarchuluun Tsermaa, Woo Seok Choi, Sung S. Ambrose Seo, Jin Seung Kim, Naoyuki Nakagawa, Harold Y. Hwang, Ho Nyung Lee, Kim Myung-Whun

Physics and Astronomy Faculty Publications

We observed ultra-short laser pulse-induced transient optical anisotropy in a LaMnO3 thin film. The anisotropy was induced by laser pulse irradiation with a fluence of less than 0.1 mJ/cm2 at room temperature. The transmittance and reflectance showed strong dependence on the polarization states of the pulses. For parallel and perpendicular polarization states, there exists a difference of approximately 0.2% for transmittance and 0.05% for reflectance at 0.3 ps after the irradiation with a pump pulse, respectively. The theoretical values for optical transmittance and reflectance with an assumption of an orbital ordering of 3d eg electrons in …


Gravitational Correction To Vacuum Polarization, Ulrich D. Jentschura Feb 2015

Gravitational Correction To Vacuum Polarization, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

We consider the gravitational correction to (electronic) vacuum polarization in the presence of a gravitational background field. The Dirac propagators for the virtual fermions are modified to include the leading gravitational correction (potential term) which corresponds to a coordinate-dependent fermion mass. The mass term is assumed to be uniform over a length scale commensurate with the virtual electron-positron pair. The on-mass shell renormalization condition ensures that the gravitational correction vanishes on the mass shell of the photon, i.e., the speed of light is unaffected by the quantum field theoretical loop correction, in full agreement with the equivalence principle. Nontrivial corrections …


Electric Control Of Spin Injection Into A Ferroelectric Semiconductor, Xiaohui Liu, John D. Burton, M. Ye. Zhuravlev, Evgeny Y. Tsymbal Jan 2015

Electric Control Of Spin Injection Into A Ferroelectric Semiconductor, Xiaohui Liu, John D. Burton, M. Ye. Zhuravlev, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Electric-field control of spin-dependent properties has become one of the most attractive phenomena in modern materials research due to the promise of new device functionalities. One of the paradigms in this approach is to electrically toggle the spin polarization of carriers injected into a semiconductor using ferroelectric polarization as a control parameter. Using first-principles density-functional calculations, we explore the effect of ferroelectric polarization of electron-doped BaTiO3 (n-BaTiO3) on the spin-polarized transmission across the SrRuO3/n-BaTiO3(001) interface. Our study reveals that, in this system, the interface transmission is negatively spin polarized …


One-Loop Dominance In The Imaginary Part Of The Polarizability: Application To Blackbody And Noncontact Van Der Waals Friction, Ulrich D. Jentschura, Grzegorz Lach, Maarten Dekieviet, Krzysztof Pachucki Jan 2015

One-Loop Dominance In The Imaginary Part Of The Polarizability: Application To Blackbody And Noncontact Van Der Waals Friction, Ulrich D. Jentschura, Grzegorz Lach, Maarten Dekieviet, Krzysztof Pachucki

Physics Faculty Research & Creative Works

Phenomenologically important quantum dissipative processes include blackbody friction (an atom absorbs counterpropagating blueshifted photons and spontaneously emits them in all directions, losing kinetic energy) and noncontact van der Waals friction (in the vicinity of a dielectric surface, the mirror charges of the constituent particles inside the surface experience drag, slowing the atom). The theoretical predictions for these processes are modified upon a rigorous quantum electrodynamic treatment, which shows that the one-loop "correction" yields the dominant contribution to the off-resonant, gauge-invariant, imaginary part of the atom's polarizability at room temperature, for typical atom-surface interactions. The tree-level contribution to the polarizability dominates …


Peppo: Using A Polarized Electron Beam To Produce Polarized Positrons, A. Adeyemi, G.L Gueye, P.A. Adderly, M. L. Stutzman, M. M. Ali, H. Areti, J. F. Benesch, L. S. Cardman, J. Clark, S. Covert, S. Golge, C. Hyde Jan 2015

Peppo: Using A Polarized Electron Beam To Produce Polarized Positrons, A. Adeyemi, G.L Gueye, P.A. Adderly, M. L. Stutzman, M. M. Ali, H. Areti, J. F. Benesch, L. S. Cardman, J. Clark, S. Covert, S. Golge, C. Hyde

Physics Faculty Publications

An experiment demonstrating a new method for producing polarized positrons has been performed at the CEBAF accelerator at Jefferson Laboratory. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e+/e pairs originating from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a 1.0 mm tungsten pair-production target. This paper describes preliminary results of measurements using an 8.2 MeV/c electron beam with polarization 84% to generate positrons in the range of 3.1 to 6.2 MeV/c with polarization as high as ∼80%.


J/Ψ Polarization In P + P Collisions At √S=200 Gev In Star, James K. Adkins, Renee H. Fatemi, Wolfgang Korsch, Suvarna Ramachandran, G. Webb, L. Adamczyk, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, I. Alekseev, J. Alford, C. D. Anson, A. Aparin, D. Arkhipkin, E. C. Aschenauer Dec 2014

J/Ψ Polarization In P + P Collisions At √S=200 Gev In Star, James K. Adkins, Renee H. Fatemi, Wolfgang Korsch, Suvarna Ramachandran, G. Webb, L. Adamczyk, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, I. Alekseev, J. Alford, C. D. Anson, A. Aparin, D. Arkhipkin, E. C. Aschenauer

Physics and Astronomy Faculty Publications

We report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2T/c in p+p collisions at √s=200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT, indicating …


Theoretical And Experimental (E, 2e) Study Of Electron-Impact Ionization Of Laser-Aligned Mg Atoms, Sadek Amami, Andrew J. Murray, Al Stauffer, Kate Nixon, Gregory Armstrong, James Colgan, Don H. Madison Dec 2014

Theoretical And Experimental (E, 2e) Study Of Electron-Impact Ionization Of Laser-Aligned Mg Atoms, Sadek Amami, Andrew J. Murray, Al Stauffer, Kate Nixon, Gregory Armstrong, James Colgan, Don H. Madison

Physics Faculty Research & Creative Works

We have performed calculations of the fully differential cross sections for electron-impact ionization of magnesium atoms. Three theoretical approximations, the time-dependent close coupling, the three-body distorted wave, and the distorted wave Born approximation, are compared with experiment in this article. Results will be shown for ionization of the 3s ground state of Mg for both asymmetric and symmetric coplanar geometries. Results will also be shown for ionization of the 3p state which has been excited by a linearly polarized laser which produces a charge cloud aligned perpendicular to the laser beam direction and parallel to the linear polarization. Theoretical and …


A Low Temperature Nonlinear Optical Rotational Anisotropy Spectrometer For The Determination Of Crystallographic And Electronic Symmetries, Darius H. Torchinsky, Hao Chu, Tongfei Qi, Gang Cao, David Hsieh Aug 2014

A Low Temperature Nonlinear Optical Rotational Anisotropy Spectrometer For The Determination Of Crystallographic And Electronic Symmetries, Darius H. Torchinsky, Hao Chu, Tongfei Qi, Gang Cao, David Hsieh

Center for Advanced Materials Faculty Publications

Nonlinear optical generation from a crystalline material can reveal the symmetries of both its lattice structure and underlying ordered electronic phases and can therefore be exploited as a complementary technique to diffraction based scattering probes. Although this technique has been successfully used to study the lattice and magnetic structures of systems such as semiconductor surfaces, multiferroic crystals, magnetic thin films, and multilayers, challenging technical requirements have prevented its application to the plethora of complex electronic phases found in strongly correlated electron systems. These requirements include an ability to probe small bulk single crystals at the μm length scale, a need …


Chemically Induced Jahn–Teller Ordering On Manganite Surfaces, Zheng Gai, Wenzhi Lin, John D. Burton, K. Fuchigami, Paul C. Snijders, T. Z. Ward, Evgeny Y. Tsymbal, J. Shen, Stephen Jesse, Sergei V. Kalinin, Arthur P. Baddorf Jul 2014

Chemically Induced Jahn–Teller Ordering On Manganite Surfaces, Zheng Gai, Wenzhi Lin, John D. Burton, K. Fuchigami, Paul C. Snijders, T. Z. Ward, Evgeny Y. Tsymbal, J. Shen, Stephen Jesse, Sergei V. Kalinin, Arthur P. Baddorf

Evgeny Tsymbal Publications

Physical and electrochemical phenomena at the surfaces of transition metal oxides and their coupling to local functionality remains one of the enigmas of condensed matter physics. Understanding the emergent physical phenomena at surfaces requires the capability to probe the local composition, map order parameter fields and establish their coupling to electronic properties. Here we demonstrate that measuring the sub-30-pm displacements of atoms from high-symmetry positions in the atomically resolved scanning tunnelling microscopy allows the physical order parameter fields to be visualized in real space on the single-atom level. Here, this local crystallographic analysis is applied to the in-situ-grown manganite surfaces. …


Semi-Inclusive Charged-Current Neutrino-Nucleus Reactions, O. Moreno, T. W. Donnelly, J. W. Van Orden, W. P. Ford Jul 2014

Semi-Inclusive Charged-Current Neutrino-Nucleus Reactions, O. Moreno, T. W. Donnelly, J. W. Van Orden, W. P. Ford

Physics Faculty Publications

The general, universal formalism for semi-inclusive charged-current (anti) neutrino-nucleus reactions is given for studies of any hadronic system, namely, either nuclei or the nucleon itself. The detailed developments are presented with the former in mind and are further specialized to cases where the final-state charged lepton and an ejected nucleon are presumed to be detected. General kinematics for such processes are summarized, and then explicit expressions are developed for the leptonic and hadronic tensors involved and for the corresponding responses according to the usual charge, longitudinal and transverse projections, keeping finite the masses of all particles involved. In the case …


Characterization Of Polarized Synchrotron Light, Britny N. Delp, Jeff Corbett Jan 2014

Characterization Of Polarized Synchrotron Light, Britny N. Delp, Jeff Corbett

STAR Program Research Presentations

The Stanford Synchrotron Radiation Light accelerates electrons around a 234-meter circumference ring at relativistic speeds. The x-ray radiation produced by this process is used in many fields of science ranging from materials science to medicine.

This project seeks to measure the polarization of the 532 nanometer wavelength component in the visible light beam emitted from the SPEAR-3 synchrotron as a function of vertical position. The beam was focused through a lens, then passed through a 532 nm band pass filter and a polarizer mounted on a rotating stand. The beam power was measured as a function of vertical position and …


Magnetically Actuated Liquid Crystals, Serkan Zorba, Mingsheng Wang, Le He, Yadong Yin Jan 2014

Magnetically Actuated Liquid Crystals, Serkan Zorba, Mingsheng Wang, Le He, Yadong Yin

Physics

Ferrimagnetic inorganic nanorods have been used as building blocks to construct liquid crystals with optical properties that can be instantly and reversibly controlled by manipulating the nanorod orientation using considerably weak external magnetic fields (1 mT). Under an alternating magnetic field, they exhibit an optical switching frequency above 100 Hz, which is comparable to the performance of commercial liquid crystals based on electrical switching. By combining magnetic alignment and lithography processes, it is also possible to create patterns of different polarizations in a thin composite film and control over the transmittance of light in particular areas. Developing such magnetically responsive …


J/Ѱ Polarization In P+P Collisions At √S = 200 Gev In Star, L. Adamczyk, J. K. Adkins, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, I. Alekseev, J. Alford, C. D. Anson, A. Aparin, D. Arkhipkin, S. Bültmann Jan 2014

J/Ѱ Polarization In P+P Collisions At √S = 200 Gev In Star, L. Adamczyk, J. K. Adkins, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, I. Alekseev, J. Alford, C. D. Anson, A. Aparin, D. Arkhipkin, S. Bültmann

Physics Faculty Publications

We report on a polarization measurement of inclusive J/Ѱ mesons in the di-electron decay channel at mid-rapidity at 2 < pT < 6 GeV/c in p + p collisions at √s = 200 GeV. Data were taken with the STAR detector at RHIC. The J/Ѱ polarization measurement should help to distinguish between different models of the J/Ѱ production mechanism since they predict different pT dependences of the J/Ѱ polarization. In this analysis, J/Ѱ is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT, indicating more longitudinal J/Ѱ polarization as pT increases. The result is compared with predictions of presently available models.


Adherent Cells Avoid Polarization Gradients On Periodically Poled Litao3 Ferroelectrics, Christof Christophis, Elisabetta Ada Cavalcanti-Adam, Maximilian Hanke, Kenji Kitamura, Alexei Gruverman, Michael Grunze, Peter A. Dowben, Axel Rosenhahn Jan 2013

Adherent Cells Avoid Polarization Gradients On Periodically Poled Litao3 Ferroelectrics, Christof Christophis, Elisabetta Ada Cavalcanti-Adam, Maximilian Hanke, Kenji Kitamura, Alexei Gruverman, Michael Grunze, Peter A. Dowben, Axel Rosenhahn

Peter Dowben Publications

The response of fibroblast cells to periodically poled LiTaO3 ferroelectric crystals has been studied. While fibroblast cells do not show morphological differences on the two polarization directions, they show a tendency to avoid the field gradients that occur between polarization domains of the ferroelectric. The response to the field gradients is fully established after one hour, a time at which fibroblasts form their first focal contacts. If suspension cells, with a lower tendency to establish strong surface contacts are used, no influence of the field gradients is observed.


Excitation Of Radiative Polaritons By Polarized Broadband Infrared Radiation In Thin Oxide Films Deposited By Atomic Layer Deposition, Anita J. Vincent-Johnson, Andrew E. Masters, Xiaofeng Hu, Giovanna Scarel Jan 2013

Excitation Of Radiative Polaritons By Polarized Broadband Infrared Radiation In Thin Oxide Films Deposited By Atomic Layer Deposition, Anita J. Vincent-Johnson, Andrew E. Masters, Xiaofeng Hu, Giovanna Scarel

Department of Physics and Astronomy - Faculty Scholarship

This work contributes to the understanding of infrared radiation interaction with matter and its absorption for energy harvesting purposes. By exciting radiative polaritons in thin oxide filmswith polarized infrared radiation, a further evidence is collected that a link exists between radiative polaritons and the heat recovery mechanism hypothesized in previous research. In the voltage transient occurring when the infrared radiation is turned on, the observed time necessary to reach the maximum voltage and the voltage intensity versus angle of incidence exhibit a mismatch when generated by polarized and nonpolarized infrared radiation. The existence of collective charge oscillation modes in the …


Quantum Cheshire Cats, Yakir Aharonov, Sandu Popescu, Daniel Rohrlich, Paul Skrzypczyk Jan 2013

Quantum Cheshire Cats, Yakir Aharonov, Sandu Popescu, Daniel Rohrlich, Paul Skrzypczyk

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper we present a quantum Cheshire Cat. In a pre- and post-selected experiment we find the Cat in one place, and its grin in another. The Cat is a photon, while the grin is its circular polarization.


Single Spin Asymmetry An In Polarized Proton–Proton Elastic Scattering At √S = 200 Gev, L. Adamczyk, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, A. V. Alakhverdyants, I. Alekseev, J. Alford, C. D. Anson, D. Arkhipkin, E. Aschenauer, S. Bültmann, I. Koralt, D. Plyku Jan 2013

Single Spin Asymmetry An In Polarized Proton–Proton Elastic Scattering At √S = 200 Gev, L. Adamczyk, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, A. V. Alakhverdyants, I. Alekseev, J. Alford, C. D. Anson, D. Arkhipkin, E. Aschenauer, S. Bültmann, I. Koralt, D. Plyku

Physics Faculty Publications

We report a high precision measurement of the transverse single spin asymmetry AN at the center of mass energy √s = 200 GeV in elastic proton–proton scattering by the STAR experiment at RHIC. The AN was measured in the four-momentum transfer squared t range 0.003 ⩽ | t | ⩽ 0.035 ( GeV / c ) 2 , the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of AN and its t-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the …


Artificially Disordered Birefringent Optical Fibers, Sumudu Herath, N. P. Puente, Elena I. Chaikina, Alexey Yamilov Feb 2012

Artificially Disordered Birefringent Optical Fibers, Sumudu Herath, N. P. Puente, Elena I. Chaikina, Alexey Yamilov

Physics Faculty Research & Creative Works

We develop and experimentally verify a theory of evolution of polarization in artificially-disordered multi-mode optical fibers. Starting with a microscopic model of photo-induced index change, we obtain the first and second order statistics of the dielectric tensor in a Ge-doped fiber, where a volume disorder is intentionally inscribed via UV radiation transmitted through a diffuser. A hybrid coupled-power & coupled-mode theory is developed to describe the transient process of de-polarization of light launched into such a fiber. After certain characteristic distance, the power is predicted to be equally distributed over all co-propagating modes of the fiber regardless of their polarization. …


Thermal Correction To The Molar Polarizability Of A Boltzmann Gas, Ulrich D. Jentschura, Mariusz Puchalski, Peter J. Mohr Dec 2011

Thermal Correction To The Molar Polarizability Of A Boltzmann Gas, Ulrich D. Jentschura, Mariusz Puchalski, Peter J. Mohr

Physics Faculty Research & Creative Works

Metrology in atomic physics has been crucial for a number of advanced determinations of fundamental constants. In addition to very precise frequency measurements, the molar polarizability of an atomic gas has recently also been measured very accurately. Part of the motivation for the measurements is due to ongoing efforts to redefine the International System of Units (SI), for which an accurate value of the Boltzmann constant is needed. Here we calculate the dominant shift of the molar polarizability in an atomic gas due to thermal effects. It is given by the relativistic correction to the dipole interaction, which emerges when …


Approach To Accurately Measuring The Speed Of Optical Precursors, Chuan-Feng Li, Zong-Quan Zhou, Heejeong Jeong, Guang-Can Guo Oct 2011

Approach To Accurately Measuring The Speed Of Optical Precursors, Chuan-Feng Li, Zong-Quan Zhou, Heejeong Jeong, Guang-Can Guo

Dartmouth Scholarship

Precursors can serve as a bound on the speed of information with dispersive medium. We propose a method to identify the speed of optical wavefronts using polarization-based interference in a solid-state device, which can bound the accuracy of the speed of wavefronts to less than 10−4 with conventional experimental conditions. Our proposal may have important implications for optical communications and fast information processing.


Relativistic Reduced-Mass And Recoil Corrections To Vacuum Polarization In Muonic Hydrogen, Muonic Deuterium, And Muonic Helium Ions, Ulrich D. Jentschura Jul 2011

Relativistic Reduced-Mass And Recoil Corrections To Vacuum Polarization In Muonic Hydrogen, Muonic Deuterium, And Muonic Helium Ions, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

The reduced-mass dependence of relativistic and radiative effects in simple muonic bound systems is investigated. The spin-dependent nuclear recoil correction of order (Zα)4μ3/m2N is evaluated for muonic hydrogen and deuterium and muonic helium ions (μ is the reduced mass and mN is the nuclear mass). Relativistic corrections to vacuum polarization of order α(Zα)4μ are calculated, with a full account of the reduced-mass dependence. The results shift theoretical predictions. The radiative-recoil correction to vacuum polarization of order α(Zα)5-ln2(Zα) μ2/mN is obtained in leading logarithmic approximation. …


Blackbody-Radiation Correction To The Polarizability Of Helium, Mariusz Puchalski, Ulrich D. Jentschura, Peter J. Mohr Apr 2011

Blackbody-Radiation Correction To The Polarizability Of Helium, Mariusz Puchalski, Ulrich D. Jentschura, Peter J. Mohr

Physics Faculty Research & Creative Works

The correction to the polarizability of helium due to blackbody radiation is calculated near room temperature. A precise theoretical determination of the blackbody radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ordinary hyperpolarizability of helium. Our explicit calculations provide a definite numerical result for the effect and indicate that the effect of blackbody radiation can be excluded as a limiting factor for dielectric …


Characterization Of Optical Constants For Uranium From 10 To 47 Nm, Nicole Brimhall, Nicholas Herrick, David D. Allred, R. Steven Turley, Michael Ware, Justin Peatross Mar 2010

Characterization Of Optical Constants For Uranium From 10 To 47 Nm, Nicole Brimhall, Nicholas Herrick, David D. Allred, R. Steven Turley, Michael Ware, Justin Peatross

Faculty Publications

We use a laser high-harmonics-based extreme-ultraviolet (EUV) polarimeter to determine the optical constants of elemental uranium in the wavelength range from 10 to 47 nm. The constants are extracted from the measure ratio of p-polarized to s-polarized reflectance from a thin uranium film deposited in situ. The film thickness is inferred from a spectroscopic ellipsometry measurement of the sample after complete oxidation in room air. Uranium has been used as a high-reflectance material in the EUV. However, difficulties with oxidation prevented its careful characterization previous to this study. We find that measured optical constants for uranium vary significantly from previous …


Far-Field Optical Nanoscopy Based On Continuous Wave Laser Stimulated Emission Depletion, C. Kuang, Wei Zhao, Guiren Wang Jan 2010

Far-Field Optical Nanoscopy Based On Continuous Wave Laser Stimulated Emission Depletion, C. Kuang, Wei Zhao, Guiren Wang

Faculty Publications

Stimulated emission depletion (STED) microscopy is one of the breakthrough technologies that belong to far-field optical microscopy and can achieve nanoscale spatial resolution. We demonstrate a far-field optical nanoscopy based on continuous wave lasers with different wavelengths, i.e., violet and green lasers for excitation and STED, respectively. Fluorescent dyes Coumarin 102 and Atto 390 are used for validating the depletion efficiency. Fluorescent nanoparticles are selected for characterizing the spatial resolution of the STED system. Linear scanning of the laser beams of the STED system along one line of a microscope slide, which is coated with the nanoparticles, indicates that a …


A Low-Voltage Retarding-Field Mott Polarimeter For Photocathode Characterization, J.L. Mccarter, M.L. Stutzman, K.W. Trantham, Timothy G. Anderson, A.M. Cook, Timothy J. Gay Jan 2010

A Low-Voltage Retarding-Field Mott Polarimeter For Photocathode Characterization, J.L. Mccarter, M.L. Stutzman, K.W. Trantham, Timothy G. Anderson, A.M. Cook, Timothy J. Gay

Timothy J. Gay Publications

Nuclear physics experiments at Thomas Jefferson National Accelerator Facility’s CEBAF rely on high polarization electron beams. We describe a recently commissioned system for prequalifying and studying photocathodes for CEBAF with a load-locked, low-voltage polarized electron source coupled to a compact retarding-field Mott polarimeter. The polarimeter uses simplified electrode structures and operates from 5 to 30 kV. The effective Sherman function for this device has been calibrated by comparison with the CEBAF 5 MeV Mott polarimeter. For elastic scattering from a thick gold target at 20 keV, the effective Sherman function is 0.201(5). Its maximum efficiency at 20 keV, defined as …


Suppression Pattern Of Neutral Pions At High Transverse Momentum In Au + Au Collisions At Square Root Of Snn = 200 Gev And Constraints On Medium Transport Coefficients, Andrew Marshall Adare, Sergey V. Afanasiev, Christine A. Aidala, N. N. Ajitanand, Yasuyuki Akiba, Gyöngyi Baksay, László A. Baksay, Marcus Hohlmann, S. Rembeczki, Klaus Dehmelt Dec 2008

Suppression Pattern Of Neutral Pions At High Transverse Momentum In Au + Au Collisions At Square Root Of Snn = 200 Gev And Constraints On Medium Transport Coefficients, Andrew Marshall Adare, Sergey V. Afanasiev, Christine A. Aidala, N. N. Ajitanand, Yasuyuki Akiba, Gyöngyi Baksay, László A. Baksay, Marcus Hohlmann, S. Rembeczki, Klaus Dehmelt

Aerospace, Physics, and Space Science Faculty Publications

For Au þ Au collisions at 200 GeV, we measure neutral pion production with good statistics for transverse momentum, pT, up to 20 GeV=c. A fivefold suppression is found, which is essentially constant for 5 < pT < 20 GeV=c. Experimental uncertainties are small enough to constrain any model-dependent parametrization for the transport coefficient of the medium, e.g., hq^i in the parton quenching model. The spectral shape is similar for all collision classes, and the suppression does not saturate in Au þ Au collisions.


Long-Time Electron Spin Storage Via Dynamical Suppression Of Hyperfine-Induced Decoherence In A Quantum Dot, Wenxian Zhang, N. P. Konstantinidis, V. V. Dobrovitski, B. N. Harmon, Lea F. Santos, Lorenza Viola Mar 2008

Long-Time Electron Spin Storage Via Dynamical Suppression Of Hyperfine-Induced Decoherence In A Quantum Dot, Wenxian Zhang, N. P. Konstantinidis, V. V. Dobrovitski, B. N. Harmon, Lea F. Santos, Lorenza Viola

Dartmouth Scholarship

The coherence time of an electron spin decohered by the nuclear spin environment in a quantum dot can be substantially increased by subjecting the electron to suitable dynamical decoupling sequences. We analyze the performance of high-level decoupling protocols by using a combination of analytical and exact numerical methods, and by paying special attention to the regimes of large interpulse delays and long-time dynamics, which are outside the reach of standard average Hamiltonian theory descriptions. We demonstrate that dynamical decoupling can remain efficient far beyond its formal domain of applicability, and find that a protocol exploiting concatenated design provides best performance …