Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

City University of New York (CUNY)

Dissertations, Theses, and Capstone Projects

Discipline
Keyword
Publication Year

Articles 61 - 90 of 181

Full-Text Articles in Physics

Particle Dynamics In Anti-De Sitter Space By Eih Method, Jiusi Lei Sep 2020

Particle Dynamics In Anti-De Sitter Space By Eih Method, Jiusi Lei

Dissertations, Theses, and Capstone Projects

Following the work of Einstein, Infeld and Hoffmann, we show that particle dynamics in Anti-de Sitter spacetime can be built up by regarding singularities in spacetime manifold as the source of particles.

Since gauge fields play a foundational role in the action, the singularities are chosen to be point-like instantons. Their winding number, defined by an integration on the spheres surrounding those singularities, will turn out to be related to their masses. And their action, derived from the Chern-Simons forms, will be a co-adjoint orbit action, with group element g ∈ SO(4, 2) describing the collective coordinates of the particle. …


An Accurate Solution Of The Self-Similar Orbit-Averaged Fokker-Planck Equation For Core-Collapsing Isotropic Globular Clusters: Properties And Application, Yuta Ito Sep 2020

An Accurate Solution Of The Self-Similar Orbit-Averaged Fokker-Planck Equation For Core-Collapsing Isotropic Globular Clusters: Properties And Application, Yuta Ito

Dissertations, Theses, and Capstone Projects

Hundreds of dense star clusters exist in almost all galaxies. Each cluster is composed of approximately ten thousand through ten million stars. The stars orbit in the clusters due to the clusters' self-gravity. Standard stellar dynamics expects that the clusters behave like collisionless self-gravitating systems on short time scales (~ million years) and the stars travel in smooth continuous orbits. Such clusters temporally settle to dynamically stable states or quasi-stationary states (QSS). Two fundamental QSS models are the isothermal- and polytropic- spheres since they have similar structures to the actual core (central part) and halo (outskirt) of the clusters. The …


Wave Propagation In Random And Topological Media, Yuhao Kang Sep 2020

Wave Propagation In Random And Topological Media, Yuhao Kang

Dissertations, Theses, and Capstone Projects

This thesis discusses wave propagation in two kinds of systems, random media and topological insulators. In a disordered system, the wave is randomized by multiple scattering. The scattering matrix and associated delay times are powerful tools with which to describe wave transport. We discuss the relation among the Wigner time, the transmission time, and energy density in a lossless or lossy system. We propose the zeros of the transmission matrix and show how to manipulate the zero-transmission mode in a nonunitary system. In a photonic topological insulator, we realize an edge mode and discuss its robustness in the face of …


Generating Entanglement With The Dynamical Lamb Effect, Mirko Amico Jun 2020

Generating Entanglement With The Dynamical Lamb Effect, Mirko Amico

Dissertations, Theses, and Capstone Projects

According to quantum field theory, the vacuum is filled with virtual particles which can be turned into real ones under the influence of external perturbations. Phenomena of this kind are commonly referred to as quantum vacuum phenomena. Several quantum vacuum phenomena related to the peculiar nature of the quantum vacuum have been predicted, some of which, such as the Lamb shift and the Casimir effect, have been experimentally found. Other examples of quantum vacuum phenomena include the Unruh effect, the dynamical Casimir effect and the dynamical Lamb effect. The dynamical Lamb effect was first predicted by considering the situation of …


Generalized Four-Dimensional Effective Hadronic Supersymmetry Based On Quantum Chromodynamics (Qcd), Enxi Yu Jun 2020

Generalized Four-Dimensional Effective Hadronic Supersymmetry Based On Quantum Chromodynamics (Qcd), Enxi Yu

Dissertations, Theses, and Capstone Projects

New discovery in multiple laboratories around the globe has shown a supersymmetry between hadrons—baryons and mesons. In order to generalize the phenomenological hadronic supersymmetry, the spin-flavor SU(6) symmetry need an extension. This thesis present how we can extend SU(6) symmetry so that hadronic supersymmetry can be included. In the future, this extension can be also applied to pentaquark and tetraquark bags, for which there is an ongoing research in laboratories.


Proton Pumping Mechanism In Cytochrome C Oxidase, Xiuhong Cai Jun 2020

Proton Pumping Mechanism In Cytochrome C Oxidase, Xiuhong Cai

Dissertations, Theses, and Capstone Projects

Cytochrome c Oxidase (CcO), is the terminal electron acceptor in the membrane bound aerobic respiratory chain. It reduces O2 to water. The energy released by this reaction is stored by pumping protons from the high pH, N-side of the membrane to the low pH, P-side. The generated proton gradient provides the motive force for synthesis of ATP by the ATP synthase.

Building a proton gradient across the membrane requires that proton transport must occur along controllable proton pathways to prevent proton leakage to the N-side. It has been suggested that CcO function requires proton transfer channels in both the …


Small-X Qcd Calculations With A Biased Ensemble, Gary Kapilevich Jun 2020

Small-X Qcd Calculations With A Biased Ensemble, Gary Kapilevich

Dissertations, Theses, and Capstone Projects

In this dissertation, I will argue that we can study functional fluctuations in unintegrated gluon distributions, in the MV model as well as JIMWLK, using reweighting techniques, which will allow me to calculate QCD observables with "biased ensembles". This technique will enable me to study rare functional configurations of the gluon distributions, that might have been selected for in, for example, the centrality criteria used by the ATLAS and ALICE collaborations. After a review of these techniques, as well as a review of QCD physics at high energy in general, I will use biased ensembles to compute observables in two …


At The Interface Of Algebra And Statistics, Tai-Danae Bradley Jun 2020

At The Interface Of Algebra And Statistics, Tai-Danae Bradley

Dissertations, Theses, and Capstone Projects

This thesis takes inspiration from quantum physics to investigate mathematical structure that lies at the interface of algebra and statistics. The starting point is a passage from classical probability theory to quantum probability theory. The quantum version of a probability distribution is a density operator, the quantum version of marginalizing is an operation called the partial trace, and the quantum version of a marginal probability distribution is a reduced density operator. Every joint probability distribution on a finite set can be modeled as a rank one density operator. By applying the partial trace, we obtain reduced density operators whose diagonals …


Ii-Vi Type-Ii Quantum Dot Superlattices For Novel Applications, Vasilios Deligiannakis Feb 2020

Ii-Vi Type-Ii Quantum Dot Superlattices For Novel Applications, Vasilios Deligiannakis

Dissertations, Theses, and Capstone Projects

In this thesis, we discuss the growth procedure and the characterization results obtained for epitaxially grown submonolayer type-II quantum dot superlattices made of II-VI semiconductors. We have investigated the spin dynamics of ZnSe layers with embedded type-II ZnTe quantum dots and the use of (Zn)CdTe/ZnCdSe QDs for intermediate band solar cell (IBSC). Samples with a higher quantum dot density exhibit longer electron spin lifetimes, up to ~1 ns at low temperatures. Tellurium isoelectronic centers, which form in the ZnSe spacer regions as a result of the growth conditions, were also probed. A new growth sequence for type-II (Zn)CdTe/ZnCdSe (QDs) was …


Computational Modeling Of Charge And Excitation Energy Transfer Dynamics In Complex Environments, Ning Chen Feb 2020

Computational Modeling Of Charge And Excitation Energy Transfer Dynamics In Complex Environments, Ning Chen

Dissertations, Theses, and Capstone Projects

This thesis describes computational simulations of charge and exciton dynamics and quantum calculations of organic conjugated oligomers. A comprehensive computational study of charge hopping dynamics was conducted for a model of disordered chain of sites coupled to quantum environments. Time-dependent mean square displacement, diffusion constant, and mobility were calculated by three different computational methods for solving the master equation, which validate the accuracy of calculations. Approximate rate kernels were also tested to understand the effects of approximations in representing quantum environments. In addition to the effects of temperature and disorder, different values of the gradient in the site energy were …


Duality In A Model Of Layered Superfluids And Sliding Phases, Steven Vayl Feb 2020

Duality In A Model Of Layered Superfluids And Sliding Phases, Steven Vayl

Dissertations, Theses, and Capstone Projects

The intent of my project is to determine if the proposal of sliding phases in XY layered systems has physical ground. It will be done by comparing numerical and analytical results for a layered XY models. Sliding phases were first proposed in the context of DNA complexes and then extended to XY models, 1D coupled wires and superfluid films. The existence of the sliding phase would mean that there is a phase transition from 3D to 2D behavior. Such systems have been studied both in the clean case and with disorder. The idea of the sliding phases is based on …


Density Functional Theory Study Of Two-Dimensional Boron Nitride Films, Pradip R. Niraula Feb 2020

Density Functional Theory Study Of Two-Dimensional Boron Nitride Films, Pradip R. Niraula

Dissertations, Theses, and Capstone Projects

Since graphene was isolated in 2004, the number of two-dimensional (2D) materials and their scientific relevance have grown exponentially. Besides graphene, one of the most important and technolocially promizing 2D materials that has emerged in recent years is hexagonal boron nitride, in its monolayer or multilayer form. In my thesis work, I used density functional theory (DFT) calculations to investigate the properties of boron nitride films. In particular, I first studied the properties (i.e. formation energy, defect states, and structure) of point charged defects in monolayer and bilayer hexagonal boron nitride, and subsequently, I focused on the linear and nonlinear …


Physics And Mathematics Of Graded Quivers, Azeem Hasan Sep 2019

Physics And Mathematics Of Graded Quivers, Azeem Hasan

Dissertations, Theses, and Capstone Projects

A graded quiver with superpotential is a quiver whose arrows are assigned degrees c ∈ {0, 1, · · · , m}, for some integer m ≥ 0, with relations generated by a superpotential of degree m − 1. For m = 0, 1, 2, 3 they often describe the open string sector of D-brane systems; in particular, they capture the physics of D(5 − 2m)-branes at local Calabi-Yau (CY) (m + 2)- fold singularities in type IIB string theory. We introduce m-dimers, which fully encode the m-graded quivers and their superpotentials, in the case in which the CY (m …


Sequential Discrimination Between Non-Orthogonal Quantum States, Dov L. Fields Sep 2019

Sequential Discrimination Between Non-Orthogonal Quantum States, Dov L. Fields

Dissertations, Theses, and Capstone Projects

The problem of discriminating between non-orthogonal states is one that has generated a lot of interest. This basic formalism is useful in many areas of quantum information. It serves as a fundamental basis for many quantum key distribution schemes, it functions as an integral part of other quantum algorithms, and it is useful in experimental settings where orthogonal states are not always possible to generate. Additionally, the discrimination problem reveals important fundamental properties, and is intrinsically related to entanglement. In this thesis, the focus is on exploring the problem of sequentially discriminating between non-orthogonal states. In the simplest version these …


On Different Parametrizations Of Feynman Integrals, Ray Daniel Sameshima Sep 2019

On Different Parametrizations Of Feynman Integrals, Ray Daniel Sameshima

Dissertations, Theses, and Capstone Projects

In this doctoral thesis, we discuss and apply advanced techniques for the calculations of scattering amplitudes which, on the one hand, allow us to compute cross sections and differential distributions at high precision and, on the other hand, give us deep mathematical insights on the mathematical structures of Feynman integrals.

We start by presenting phenomenological calculations relevant for the experimental analyses at the Large Hadron Collider. We use the resummation of soft gluon emission corrections to study the associated production of a top pair and a Z boson to next-to-next-to-leading logarithmic accuracy, and compute the total cross section and differential …


Coulomb Excitation And Transport Properties Of Monolayer Graphene And The Alpha-T3 Lattice, Dipendra Dahal Sep 2019

Coulomb Excitation And Transport Properties Of Monolayer Graphene And The Alpha-T3 Lattice, Dipendra Dahal

Dissertations, Theses, and Capstone Projects

In the past few years, I focused my attention in the study of 2D material's behavior, specifically graphene . We investigated several properties of graphene like transmission of particle through a potential barrier and demonstrated the effect of band gap to suppress the Klein tunneling at head on collision, we presented the results to get the criteria of negative refractive index and Klein tunneling through multiple barrier. Next, we have carried out the calculation of polarization function of graphene in the presence of magnetic field. The effect of integer Landau filling factor is shown and the portrayed results are presented …


Optical And Collective Properties Of Excitons In 2d Semiconductors, Matthew N. Brunetti Sep 2019

Optical And Collective Properties Of Excitons In 2d Semiconductors, Matthew N. Brunetti

Dissertations, Theses, and Capstone Projects

We study the properties of excitons in 2D semiconductors (2DSC) by numerically solving the Schr\"{o}dinger equation for an interacting electron and hole in the effective mass approximation, then calculating optical properties such as the transition energies, oscillator strengths, and absorption coefficients. Our theoretical approach allows us to consider both direct excitons in monolayer (ML) 2DSC and spatially indirect excitons in heterostructures (HS) consisting of two 2DSC MLs separated by few-layer insulating hexagonal boron nitride (h-BN). In particular, we study indirect excitons in TMDC HS, namely MoS2, MoSe2, WS2, and WSe2; …


Stability And Application Of The K-Core Dynamical Model To Biological Networks, Francesca Beatrice Arese Lucini Sep 2019

Stability And Application Of The K-Core Dynamical Model To Biological Networks, Francesca Beatrice Arese Lucini

Dissertations, Theses, and Capstone Projects

The objective of the dissertation is to illustrate the importance of the k-core dynamical model, by first presenting the stability analysis of the nonlinear k-core model and compare its solution to the most widely used linear model. Second, I show a real world application of the k-core model to describe properties of neural networks, specifically, the transition from conscious to subliminal perception.


Exciton Polaritons In Two-Dimensional Transition Metal Dichalcogenides, Jie Gu Sep 2019

Exciton Polaritons In Two-Dimensional Transition Metal Dichalcogenides, Jie Gu

Dissertations, Theses, and Capstone Projects

Strong interaction between photons and excitons in semiconductors results in the formation of half-light half-matter quasiparticles termed exciton-polaritons. Owing to their hybrid character, they inherit the strong interparticle interaction from their excitonic (matter) component via Coulomb interaction while the photonic component lends the small mass (~105 times lighter than free electrons) and long propagation distances. Additionally, exciton-polaritons also carry properties of the host material excitons such as spin and valley polarization and can be probed via the photons that leak out of the cavities since the photon carries all the information owing to conservation laws. Since the first demonstration …


Inference Of Language Functional Network In Healthy, Cancerous And Bilingual Brains By Fmri And Network Modeling, Qiongge Li Sep 2019

Inference Of Language Functional Network In Healthy, Cancerous And Bilingual Brains By Fmri And Network Modeling, Qiongge Li

Dissertations, Theses, and Capstone Projects

We study the underlying mechanism by which language processing occurs in the human brain using inference methods on functional magnetic resonance imaging data. The data analyzed stems from several cohorts of subjects; a monolingual group, a bilingual group, a healthy control group and one diseased case. We applied a complex statistical inference pipeline to determine the network structure of brain components involved with language. This healthy network reveals a fully connected triangular relationship between the pre-Supplementary Motor Area (pre-SMA), the Broca's Area (BA), and the ventral Pre-Motor Area (PreMA) in the left hemisphere. This "triangle'' shows consistently in all the …


Interplay Of Magnetism, Superconductivity, And Topological Phases Of Matter, Cody Youmans Sep 2019

Interplay Of Magnetism, Superconductivity, And Topological Phases Of Matter, Cody Youmans

Dissertations, Theses, and Capstone Projects

Multiband superconducting materials, such as iron pnictides and doped topological insulators, have shown to be particularly promising platforms for realizing unconventional electronic behavior of both fundamental and practical importance. Similarly, new innovations in the engineering of gapped topological phases, like semiconductor based Kitaev chains and topological insulator based heterostructures, have opened new directions for solid-state design. Central to much of the excitement generated by such multifaceted electronic systems is a rich interplay between various inherent structural ordering tendencies and topologically non-trivial properties.

In some classes of pnictides, spin density wave order coexists with superconductivity over a range of doping and …


Topological Insulating States In Photonics And Acoustics, Xiang Ni May 2019

Topological Insulating States In Photonics And Acoustics, Xiang Ni

Dissertations, Theses, and Capstone Projects

Recent surge of interest in topological insulators, insulating in their interior but conducting at the surfaces or interfaces of different domains, has led to the discovery of a variety of new topological states, and their topological invariants are characterized by numerous approaches in the category of topological band theory. The common features shared by topological insulators include, the topological phase transition occurs if the bulk bandgap is formed due to the symmetries reduction, the topological invariants exist characterizing the global properties of the material and inherently robust to disorder and continuous perturbations irrespective of the local details. Most importantly, these …


Emergent Critical Properties In Liquid-Gas Transition And Single Dislocations In Solid He4, Max Yarmolinsky Feb 2019

Emergent Critical Properties In Liquid-Gas Transition And Single Dislocations In Solid He4, Max Yarmolinsky

Dissertations, Theses, and Capstone Projects

My research focuses on the analytical and numerical study of seemingly completely different systems - the classical critical point of the liquid-gas transition and a quantum topological defect (dislocation) in solid Helium-4. The unifying theme, though, is Emergence - the appearance of unexpected qualities at large distance and time scales in these systems. Our results resolve the long standing controversy about the nature of the liquid-gas criticality by showing with high confidence that it is the same as that of Ising ferromagnet. In solid 4He, a quantum superclimbing dislocation, which is expected to be violating space-time symmetry according to …


Magnetic Resonance Studies Of Free Radicals Generation And Their Impact In Different Polymers, Sunita Humagain Feb 2019

Magnetic Resonance Studies Of Free Radicals Generation And Their Impact In Different Polymers, Sunita Humagain

Dissertations, Theses, and Capstone Projects

Studies of free radicals in the physics, chemistry, biology, and materials science have contributed to advancements in those fields. The presence of radicals can damage the material and system in some instances and, in some cases, they may enhance the property of the material as well. Knowledge of free radical transformations helps in resilience of certain polymers and inhibition of the oxidation of food and medicine. In this thesis, using the magnetic resonance techniques, EPR and NMR, the generation of free radicals and their effect on the structure of the material is being studied.

Kapton Polyimide (PI, Kapton®) used in …


Control Of Energy Transfer And Molecular Energetics Using Photonic Nanostructures, Rahul Deshmukh Feb 2019

Control Of Energy Transfer And Molecular Energetics Using Photonic Nanostructures, Rahul Deshmukh

Dissertations, Theses, and Capstone Projects

In the last three decades, the design and fabrication of different types of photonic nanostructures have allowed us to control and enhance the interaction of light (or photons) with matter (or excitons). In this work, we demonstrate the use of three different nanostructures to control different material properties. The design and fabrication of the nanostructures is discussed along with the results obtained using characterization techniques of angle-resolved white light reflectivity and transmission, and time-resolved and steady-state photoluminescence experiments. Specifically, we demonstrate the use of Optical Topological Transitions (OTT) in metamaterials to show enhanced efficiency in the non-radiative transfer of energy …


Control Of Light-Matter Interactions Via Nanostructured Photonic Materials, Nicholas Proscia Feb 2019

Control Of Light-Matter Interactions Via Nanostructured Photonic Materials, Nicholas Proscia

Dissertations, Theses, and Capstone Projects

The thesis here investigates the manipulation of light-matter interactions via nanoscale engineering of material systems. When material systems are structured on the nanoscale, their optical responses can be dramatically altered. In this thesis, this is done in two primary ways: One method is by changing the geometry of nanostructures to induce a resonant behavior with incident electromagnetic field of optical wavelengths. This allows field enhancement in highly localized areas to strengthen exotic light-matter interactions that would otherwise be too weak to measure or for practical use. In this regard, the work presented here studies a voltage produced in a metal …


A Network Theoretical Approach To Real-World Problems: Application Of The K-Core Algorithm To Various Systems, Kate Burleson-Lesser Sep 2018

A Network Theoretical Approach To Real-World Problems: Application Of The K-Core Algorithm To Various Systems, Kate Burleson-Lesser

Dissertations, Theses, and Capstone Projects

The study of complex networks is, at its core, an exploration of the mechanisms that control the world in which we live at every scale, from particles no bigger than a grain of sand and amino acids that comprise proteins, to social networks, ecosystems, and even countries. Indeed, we find that, regardless of the physical size of the network's components, we may apply principles of complex network theory, thermodynamics, and statistical mechanics to not only better understand these specific networks, but to formulate theories which may be applied to problems on a more general level. This thesis explores several networks …


Baryons And Interactions In Magnetic Fields, Amol Deshmukh Sep 2018

Baryons And Interactions In Magnetic Fields, Amol Deshmukh

Dissertations, Theses, and Capstone Projects

The QCD external field problem allows one to probe the rich behavior of strongly interacting systems under external conditions, including the modification of hadron structure and interactions due to external electromagnetic fields. These dynamics, moreover, are likely relevant to describe the physics in the interiors of magnetars and in non-central heavy-ion collisions, for which large magnetic fields upwards of $10^{19}$ Gauss are conceivable. Additionally motivated by lattice QCD calculations in external fields, we study the behavior of single- and two-baryon (specifically, two-nucleon) systems in large magnetic fields. The dependence of single-baryon energies on magnetic fields is explored using chiral dynamics. …


Direct Experimental Evidence Of Toroidal Symmetry In A Lanthanide-Based Molecular Magnet, Qing Zhang Sep 2018

Direct Experimental Evidence Of Toroidal Symmetry In A Lanthanide-Based Molecular Magnet, Qing Zhang

Dissertations, Theses, and Capstone Projects

Molecular magnets (MM) are finite clusters of identical exchange-coupled magnetic systems arranged within a crystalline array such that interactions between neighboring MMs are negligible. Their small size has proven them amenable test beds for the investigation of a wide range of fundamental quantum phenomena such as spin frustration quantum tunneling (QT) of magnetization and Neel vector quantum coherence and Berry phase interference.

Cases where MMs have been found to exhibit quantum wave-functions that evolve coherently are particularly interesting due to their potential for use in quantum information processing. Toroidal magnetic moments, a kind of MM, have fascinating properties that could …


Quantum And Classical Transport Of 2d Electrons In The Presence Of Long And Short Range Disorder, Jesse Kanter Sep 2018

Quantum And Classical Transport Of 2d Electrons In The Presence Of Long And Short Range Disorder, Jesse Kanter

Dissertations, Theses, and Capstone Projects

This work focuses on the study of electron transport of 2-D electron gas systems in relation to both fundamental properties of the systems such as disorder and scattering mechanisms, as well as unique magnetoresistance (MR) effects. A large portion of the discussion is built around the use of an in plane magnetic field to vary the ratio between the Zeeman energy between electrons of different spins and the Landau level spacing, creating a tool to control the quantization of the density of states (DOS).

This tool is first used to isolate Quantum Positive Magnetoresistance (QPMR), which grants insight to the …