Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Evaluating Deep-Learning Models For Debris-Covered Glacier Mapping, Zhiyuan Xie, Vijayan K. Asari, Umesh K. Haritashya Dec 2021

Evaluating Deep-Learning Models For Debris-Covered Glacier Mapping, Zhiyuan Xie, Vijayan K. Asari, Umesh K. Haritashya

Electrical and Computer Engineering Faculty Publications

In recent decades, mountain glaciers have experienced the impact of climate change in the form of accelerated glacier retreat and other glacier-related hazards such as mass wasting and glacier lake outburst floods. Since there are wide-ranging societal consequences of glacier retreat and hazards, monitoring these glaciers as accurately and repeatedly as possible is important. However, the accurate glacier boundary, especially the debriscovered glacier (DCG) boundary, which is one of the primary inputs in many glacier analyses, remains a challenge even after many years of research using conventional remote sensing methods or machine-learning methods. The GlacierNet, a deep-learning-based approach, utilized the …


Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli Oct 2021

Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli

Electrical and Computer Engineering Faculty Publications

Super-resolution (SR) aims to increase the resolution of imagery. Applications include security, medical imaging, and object recognition. We propose a deep learning-based SR system that takes a hexagonally sampled low-resolution image as an input and generates a rectangularly sampled SR image as an output. For training and testing, we use a realistic observation model that includes optical degradation from diffraction and sensor degradation from detector integration. Our SR approach first uses non-uniform interpolation to partially upsample the observed hexagonal imagery and convert it to a rectangular grid. We then leverage a state-of-the-art convolutional neural network (CNN) architecture designed for SR …


Guest Editorial: Edge Intelligence For Beyond 5g Networks, Yan Zhang, Zhiyong Feng, Hassnaa Moustafa, Feng Ye, Usman Javaid, Chunfen Cui Apr 2021

Guest Editorial: Edge Intelligence For Beyond 5g Networks, Yan Zhang, Zhiyong Feng, Hassnaa Moustafa, Feng Ye, Usman Javaid, Chunfen Cui

Electrical and Computer Engineering Faculty Publications

Beyond fifth-generation (B5G) networks, or so-called "6G", is the next-generation wireless communications systems that will radically change how Society evolves. Edge intelligence is emerging as a new concept and has extremely high potential in addressing the new challenges in B5G networks by providing mobile edge computing and edge caching capabilities together with Artificial Intelligence (AI) to the proximity of end users. In edge intelligence empowered B5G networks, edge resources are managed by AI systems for offering powerful computational processing and massive data acquisition locally at edge networks. AI helps to obtain efficient resource scheduling strategies in a complex environment with …


Color-Compressive Bilateral Filter And Nonlocal Means For High-Dimensional Images, Christina Karam, Kenjiro Sugimoto, Keigo Hirakawa Mar 2021

Color-Compressive Bilateral Filter And Nonlocal Means For High-Dimensional Images, Christina Karam, Kenjiro Sugimoto, Keigo Hirakawa

Electrical and Computer Engineering Faculty Publications

We propose accelerated implementations of bilateral filter (BF) and nonlocal means (NLM) called color-compressive bilateral filter (CCBF) and color-compressive nonlocal means (CCNLM). CCBF and CCNLM are random filters, whose Monte-Carlo averaged output images are identical to the output images of conventional BF and NLM, respectively. However, CCBF and CCNLM are considerably faster because the spatial processing of multiple color channels are combined into a single random filtering process. This implies that the complexity of CCBF and CCNLM is less sensitive to color dimension (e.g., hyperspectral images) relatively to other BF and NLM methods. We experimentally verified that the execution time …