Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 64

Full-Text Articles in Physics

Lqg/Ltr Tilt And Tip Control For The Starfire Optical Range 3.5-Meter Telescope's Adaptive Optics System, Neil D. Paris Mar 2006

Lqg/Ltr Tilt And Tip Control For The Starfire Optical Range 3.5-Meter Telescope's Adaptive Optics System, Neil D. Paris

Theses and Dissertations

The Air Force Research Laboratory has sponsored research on the tracking control loop portion of the adaptive optics system in the Starfire Optical Range 3.5-meter telescope at Kirtland Air Force Base. The control loop includes two steering mirrors (Coarse Steering Mirror and Fine Steering Mirror) used to remove wavefront tilt and tip phase distortion from light entering the telescope. The objective of this research is to design a single Linear Quadratic Gaussian controller to control both steering mirrors in order to eliminate wavefront tilt and tip distortions induced by the earth's atmosphere, and to evaluate the stability robustness and performance …


Passive Ranging Using Atmospheric Oxygen Absorption Spectra, Michael R. Hawks Mar 2006

Passive Ranging Using Atmospheric Oxygen Absorption Spectra, Michael R. Hawks

Theses and Dissertations

The depth of absorption bands in observed spectra of distant, bright sources can be used to estimate range to the source. A novel approach is presented and demonstrated using observations of the oxygen absorption band near 762 nm. Range is estimated by comparing observed values of band-average absorption against curves derived from either historical data or model predictions. Curves are based on fitting a random band model to the data, which reduces average range error by 67% compared to the Beer's Law model used in previous work. A new modification to existing band models for long, inhomogeneous paths is presented …


Active Optical Tracking With Spatial Light Modulators, Steven R. Mawhorter Mar 2006

Active Optical Tracking With Spatial Light Modulators, Steven R. Mawhorter

Theses and Dissertations

Two spatial light modulators are utilized for beam splitting, steering and tracking. Both linear and holographic phase screens are used in a demonstration of technology to allow real time tracking to communicate in a one-to-several type scenario. One SLM is used to apply a linear phase modulation to steer multiple beams onto a detector. The spots that are produced represent the targets as they move around the field of view of the central communication node. A Gerchberg-Saxton algorithm will subsequently use the detected spots as the desired pointing locations. Using this as input, the Gerchberg-Saxton algorithm yields a phase only …


Multi-Dimensional Wave Front Sensing Algorithms For Embedded Tracking And Adaptive Optics Applications, Christopher C. Wood Mar 2006

Multi-Dimensional Wave Front Sensing Algorithms For Embedded Tracking And Adaptive Optics Applications, Christopher C. Wood

Theses and Dissertations

Current tracking and adaptive optics techniques cannot compensate for fast-moving extended objects, which is important for ground-based telescopes providing space situational awareness. To fill this need, a vector-projection maximum-likelihood wave-front sensing algorithm development and testing follows for this application. A derivation and simplification of the Cramer-Rao Lower Bound for wavefront sensing using a laser guide star bounds the performance of these systems and guides implementation of a vastly optimized maximum-likelihood search algorithm. A complete analysis of the bias, mean square error, and variance of the algorithm demonstrates exceptional performance of the new sensor. A proof of concept implementation shows feasibility …


Deconvolution Analysis Of Laser Pulse Profiles From 3-D Ladar Temporal Returns, Michael D. Walter Mar 2005

Deconvolution Analysis Of Laser Pulse Profiles From 3-D Ladar Temporal Returns, Michael D. Walter

Theses and Dissertations

Three-dimensional laser imaging systems offer important advantages for battlefield applications, such as night-time targeting and tactical reconnaissance. Recently developed technologies used by coherent detection systems that collect temporally resolved images include arrays of Avalanche Photo-Diodes (APD), Geiger mode APDs, and photo-diodes. Frequently, LADAR systems produce waveforms from each detector that characterize the convolution of the transmitted laser pulse with the target surface. The pulse convolution generates uncertainty as to the precise location of a target surface, which can severely impact various weapon systems' targeting capability. This work analyzes two deconvolution techniques: Wiener filtering and an iterative process derived from the …


Using Liquid Crystal Spatial Light Modulators For Closed Loop Tracking And Beam Steering With Phase Holography, Michael J. Perry Mar 2005

Using Liquid Crystal Spatial Light Modulators For Closed Loop Tracking And Beam Steering With Phase Holography, Michael J. Perry

Theses and Dissertations

Optical Phased Array (OPA) technology offers advantages in the reduction of size, weight, and power of optical steering devices. Nematic liquid crystal (LC) spatial light modulators (SLMs) have been studied as a potential candidate for building non-mechanical OPAs. They can steer a laser beam and split the beam into multiple beams. This thesis builds upon the prior research showing each split beam can be individually controlled, including variation in intensity. A closed loop tracking scenario shows the flexibility of the SLM by tracking and stabilizing an incoming beam. Results show that applying a phase grating to the SLM has limitations …


Computational Model Of One-Dimensional Dielectric Barrier Discharges, Krista G. Marchand Mar 2005

Computational Model Of One-Dimensional Dielectric Barrier Discharges, Krista G. Marchand

Theses and Dissertations

As theory lags experiment for dielectric barrier discharge flow control, two different computational methods are implemented to give further insight into characteristics of the dielectric barrier discharge (DBD). A one-dimensional fluid model of a surface-type dielectric barrier discharge is created using He as the background gas. This simple model, which only considers ionizing collisions and recombination in the electropositive gas, creates an important framework for future studies into the origin of experimentally observed flow-control effects of the DBD. The two methods employed in this study include the semi-implicit sequential algorithm and the fully implicit simultaneous algorithm. The first involves consecutive …


Electro-Optic Beam Steering Using Domain Engineered Lithium Tantalate, Daren J. Chauvin Mar 2005

Electro-Optic Beam Steering Using Domain Engineered Lithium Tantalate, Daren J. Chauvin

Theses and Dissertations

The operation of a 14-channel five stage electro-optic beam steering device was studied. Beam deflection scanned from 0° to 10.1° was demonstrated. The maximum angle is within 0.3% of design. Many laser systems in operation today implement mechanical beam steering methods that are often expensive in terms of cost, weight and power. They are slow and subject to wear and vibration. A non-inertial beam scanning mechanism, such as one based on the device studied in this research could enhance the performance of these systems. The device studied here is fabricated in LiTaO3 using micro-patterned domain reversal. The 14 channels …


Daytime Detection Of Space Objects, Alistair D. Funge Mar 2005

Daytime Detection Of Space Objects, Alistair D. Funge

Theses and Dissertations

Space Situational Awareness (SSA) requires repeated object updates for orbit accuracy. Detection of unknown objects is critical. A daytime model was developed that evaluated sun flares and assessed thermal emissions from space objects. Iridium satellites generate predictable sun glints. These were used as a model baseline for daytime detections. Flares and space object thermal emissions were examined for daytime detection. A variety of geometric, material and atmospheric characteristics affected this daytime detection capability. In a photon noise limited mode, simulated Iridium flares were detected. The peak Signal-to- Noise Ratios (SNR) were 6.05e18, 9.63e5, and 1.65e7 for the nighttime, daytime and …


Deviation Of Time-Resolved Luminescence Dynamics In Mwir Semiconductor Materials From Carrier Recombination Theory Predictions, Peter M. Johnson Mar 2004

Deviation Of Time-Resolved Luminescence Dynamics In Mwir Semiconductor Materials From Carrier Recombination Theory Predictions, Peter M. Johnson

Theses and Dissertations

Time resolved luminescence spectroscopy was used to characterize luminescence decay curves for a bulk InAs sample and an InAsSb type-I quantum-well sample over the first 3ns following excitation. The luminescence decay curves were then converted to carrier densities and used to find recombination coefficients that provided the least-squared-error solution of the rate equation describing carrier recombination. Recombination coefficients describing Shockley Read-Hall (ASRH) radiative (Brad) and Auger (CAug) recombination were determined at two different temperatures and four excitation powers, then analyzed for consistency and physical significance. For all of the resulting least …


Quantum Mechanical Calculations Of Monoxides Of Silicon Carbide Molecules, John W. Roberts Jr. Mar 2003

Quantum Mechanical Calculations Of Monoxides Of Silicon Carbide Molecules, John W. Roberts Jr.

Theses and Dissertations

Modern semiconductor devices are principally made using the element silicon. In recent years, silicon carbide (SiC), with its wide band-gap, high thermal conductivity, and radiation resistance, has shown prospects as a semiconductor material for use in high temperature and radiation environments such as jet engines and satellites. A limiting factor in the performance of many SiC semiconductor components is the presence of lattice defects formed at oxide dielectric junctions during processing. Recent theoretical work has used small quantum mechanical systems embedded in larger molecular mechanics structures to attempt to better understand SiC surfaces and bulk materials and their oxidation. This …


Laser Intensity Scaling Through Stimulated Scattering In Optical Fibers, Timothy H. Russell Dec 2001

Laser Intensity Scaling Through Stimulated Scattering In Optical Fibers, Timothy H. Russell

Theses and Dissertations

The influence of stimulated scattering on laser intensity in fiber optic waveguides is examined. Stimulated Brillouin scattering (SBS) in long, multimode optical waveguides is found to generate a Stokes beam that propagates in the fiber LP01 mode. Additionally, the same process is found to combine multiple laser beams into a single spatially coherent source. Limitations in beam cleanup and combining are also investigated to identify ways to overcome them. The last portion of the dissertation theoretically examines suppression of stimulated Raman scattering in fibers to eliminate the restriction this imposes on the power of a fiber laser or amplifier. The …


Space Charge Structure Of A Glow Discharge In The Presence Of A Longitudinal Inhomogeneity, Frank A. Tersigni Mar 1999

Space Charge Structure Of A Glow Discharge In The Presence Of A Longitudinal Inhomogeneity, Frank A. Tersigni

Theses and Dissertations

A survey of space charge structures arising due to inhomogeneities in glow discharges was conducted. Space charge structures associated with tube geometries, the cathode sheath, striations, and shockwaves were examined. Space charge effects on the Electron Energy Distribution Function (EEDF) were explored for a geometric inhomogeneity using an approximate nonlocal solution to the one dimensional Boltzmann equation after Godyak. The approximate solution partially captured qualitative aspects of space charge effects on the EEDF. Simplification of collisional effects and adaptation of an approximate electric field restricted quantitative comparisons with experimental data. It is recommended that any future analysis of space charge …


Linear Reconstruction Of Non-Stationary Image Ensembles Incorporating Blur And Noise Models, Stephen D. Ford Mar 1998

Linear Reconstruction Of Non-Stationary Image Ensembles Incorporating Blur And Noise Models, Stephen D. Ford

Theses and Dissertations

Two new linear reconstruction techniques are developed to improve the resolution of images collected by ground-based telescopes imaging through atmospheric turbulence. The classical approach involves the application of constrained least squares (CLS) to the deconvolution from wavefront sensing (DWFS) technique. The new algorithm incorporates blur and noise models to select the appropriate regularization constant automatically. In all cases examined, the Newton-Raphson minimization converged to a solution in less than 10 iterations. The non-iterative Bayesian approach involves the development of a new vector Wiener filter which is optimal with respect to mean square error (MSE) for a non-stationary object class degraded …


Performance Of Imaging Laser Radar In Rain And Fog, Kathleen M. Campbell Mar 1998

Performance Of Imaging Laser Radar In Rain And Fog, Kathleen M. Campbell

Theses and Dissertations

The Air Force is currently developing imaging laser radar systems (ladar) for use on precision guided munitions and other imaging systems. Scientists at Eglin Air Force Base, in conjunction with Wright Laboratories, are testing a 1.06-um wavelength ladar system and need to understand the weather effects on the ladar images. As the laser beam propagates through the atmosphere, fog droplets and raindrops can cause image degradation, and these image degradations are manifested as either dropouts or false returns. An analysis of the dropouts and false returns helped to quantify the performance of the system in adverse weather conditions. Statistical analysis …


Spontaneous Emission In Microcavity Lasers, Dustin Philip Ziegler Dec 1997

Spontaneous Emission In Microcavity Lasers, Dustin Philip Ziegler

Theses and Dissertations

An understanding of spontaneous emission processes within microcavities is crucial in addressing the need to make tomorrow's microlasers more efficient. One approach to improving the device efficiency is to reduce the threshold input energy at which lasing begins to occur. It has been suggested that the threshold in a microcavity laser can be decreased by increasing the fraction of spontaneous emission into the lasing mode, this can be accomplished by preferentially coupling the gain medium of the laser to the electromagnetic cavity mode of interest. It therefore becomes necessary to understand the mechanism by which this coupling takes place. This …


Optimization Considerations For Adaptive Optics Digital Imagery Systems, Robert T. Brigantic Jun 1997

Optimization Considerations For Adaptive Optics Digital Imagery Systems, Robert T. Brigantic

Theses and Dissertations

This dissertation had three objectives. The first objective was to develop image quality metrics that characterize Adaptive Optics System (AOS) performance. The second objective was to delineate control settings that maximize AOS performance. The third objective was to identify and characterize trade-offs between fully and partially compensated adaptive. For the first objective, three candidate image quality metrics were considered: the Strehl ratio, a novel metric that modifies the Strehl ratio by integrating the modulus of the average system optical transfer function to a 'noise-effective-cutoff' frequency at which some specified image spectrum signal-to-noise-ratio level is attained, and the noise-effective-cutoff frequency. It …


Maximum Likelihood Estimation Of Wave Front Slopes Using A Hartmann-Type Sensor, Scott A. Sallberg Dec 1995

Maximum Likelihood Estimation Of Wave Front Slopes Using A Hartmann-Type Sensor, Scott A. Sallberg

Theses and Dissertations

Current methods for estimating the wave front slope at the pupil of a telescope equipped with a Hartmann-type wave front sensor (H-WFS) are based on a simple centroid calculation of the intensity distributions (spots) recorded in each subaperture of the H-WFS. The centroid method does not include any knowledge concerning correlation properties of the slopes over the subapertures or the amount of light collected by the telescope and diverted to the H-WFS for wave front reconstruction purposes. This thesis devises a maximum likelihood (ML) estimation of the spot centroids by incorporating statistical knowledge of the spot shifts. The light level …


Effects Of Neutron Radiation On Resonant Cavity Light-Emitting Diodes, Daniel S. Hinkel Dec 1995

Effects Of Neutron Radiation On Resonant Cavity Light-Emitting Diodes, Daniel S. Hinkel

Theses and Dissertations

Resonant Cavity Light Emitting Diodes (RCLEDs) were irradiated in Ohio State University's nuclear reactor to determine the effects of Neutron displacement damage. The RCLEDs were characterized both before and after irradiation by their current versus voltage curves (I-V curves) and external light power versus current curves (L-I curves). The I-V curves showed an increase in the "knee voltage" at a neutron fluence of 1.45x1017 neutrons/cm2. Logarithmic decreases in external light power and differential quantum efficiency were observed. Significant decreases in external light power were observed at neutron fluences greater than 5.1x1013 neutrons/cm2. Equations were developed to …


Two-Wavelength Neodymium Based Lasers, Scott H. Mccracken Dec 1995

Two-Wavelength Neodymium Based Lasers, Scott H. Mccracken

Theses and Dissertations

A dual wavelength Q switched laser cavity has been successfully designed and assembled to evaluate the new neodymium (Nd) based materials. Initial characterization has been achieved for Nd:YAG and Nd:YLF. The results indicate that for a fixed pulse repetition frequency, the delay time can be used to adjust the relative energy between the 1.06 and 1.32 micrometer pulses. Any deficiency in the performance of one transition can be made up by performance in the other simply by changing the relative amount of time the population inversion is allowed to build up for each pulse. The best performance was obtained using …


Non-Imaging Infrared Spectral Target Detection, Matthew R. Whiteley Sep 1995

Non-Imaging Infrared Spectral Target Detection, Matthew R. Whiteley

Theses and Dissertations

Automatic detection of time-critical mobile targets using spectral-only infrared radiance data is explored. A quantification of the probability of detection, false alarm rate, and total error rate associated with this detection process is provided. A set of classification features is developed for the spectral data, and these features are utilized in a Bayesian classifier singly and in combination to provide target detection. The results of this processing are presented and sensitivity of the class separability to target set, target configuration, diurnal variations, mean contrast, and ambient temperature estimation errors is explored. This work introduces the concept of atmospheric normalization of …


Ohmic Contact To Ion Implanted Gallium Arsenide Antimonide For Application To Indium Aluminum Arsenide-Gallium Arsenide Antimonide Heterostructure Insulated-Gate Field Effect Transistors, Kenneth G. Merkel Ii Jul 1995

Ohmic Contact To Ion Implanted Gallium Arsenide Antimonide For Application To Indium Aluminum Arsenide-Gallium Arsenide Antimonide Heterostructure Insulated-Gate Field Effect Transistors, Kenneth G. Merkel Ii

Theses and Dissertations

The p-channel In0.52Al0.48As-GaAs1-xSbx heterostructure insulated-gate field effect transistor (p-HIGFET) is a candidate for complementary integrated circuits due to superior cutoff characteristics and low gate leakage current. Advancement of the In0.52Al0.48As-GaAs1-xSbx p-HIGFET requires improved source-drain design. Five main tasks were accomplished to achieve this goal. First, thermal limits of the In0.52Al0.48As-GaAs0.51Sb0.49 HIGFET were investigated. Second, the temperature dependence of band gap and impurity energies were determined for beryllium doped In0.52Al0.48. Third, high acceptor concentrations were obtained …


Flow Visualization Of A Turbulent Shear Flow Using An Optical Wavefront Sensor, Daniel W. Jewell Dec 1994

Flow Visualization Of A Turbulent Shear Flow Using An Optical Wavefront Sensor, Daniel W. Jewell

Theses and Dissertations

The research reported here investigated the use of a shearing interferometer (SI) wavefront sensor to determine the effects of shear-layer turbulence on an optical wavefront. A collimated helium-neon laser beam was propagated through a plane shear-layer produced by mixing helium and nitrogen at different velocities. Since the gases have different indices of refraction, the optical wavefront was distorted by different amounts by each gas. The SI measured the wavefront slope across the sampled area of the wavefront. The shear-layer was viewed from two orthogonal directions. This document contains shadow graphs, interference patterns imaged by each of the SI's six cameras, …


Frame Selection Performance Limits For Statistical Image Reconstruction Of Adaptive Optics Compensated Images, Stephen D. Ford Dec 1994

Frame Selection Performance Limits For Statistical Image Reconstruction Of Adaptive Optics Compensated Images, Stephen D. Ford

Theses and Dissertations

The U.S. Air Force uses adaptive optics systems to collect images of extended objects beyond the atmosphere. These systems use wavefront sensors and deformable mirrors to compensate for atmospheric turbulence induced aberrations. Adaptive optics greatly enhance image quality; however, wavefront aberrations are not completely eliminated. Therefore, post-detection processing techniques are employed to further improve the compensated images. Typically, many short exposure images are collected, recentered to compensate for tilt, and then averaged to overcome randomness in the images and improve signal-to-noise ratio. Experience shows that some short exposure images in a data set are better than others. Frame selection exploits …


Multispectral Detection Of Ground Targets In Highly Correlated Backgrounds, Jason E. Thomas Dec 1994

Multispectral Detection Of Ground Targets In Highly Correlated Backgrounds, Jason E. Thomas

Theses and Dissertations

Multispectral detection methods attempt to discriminate targets in a dominant clutter background using multiple images of the same real-world scene taken in different narrow spectral bands in the infrared. Detection is possible due to the empirically observed phenomenon that the radiance of man-made objects, such as a tank or truck, often lies off the main spectral correlation axis of that of natural backgrounds. Radiometric measurements of several vehicles and a tree canopy background taken over three days in June. 1994 were used to examine the factors affecting multispectral detection. Results clearly showed that the processes which provide for higher spectral …


A Diffraction-Based Model Of Anisoplanatism Effects In Adaptive Optic Systems, Steven E. Troxel Jun 1994

A Diffraction-Based Model Of Anisoplanatism Effects In Adaptive Optic Systems, Steven E. Troxel

Theses and Dissertations

This dissertation presents a new model for computing the angle dependent performance measures of an adaptive-optics system. By incorporating diffraction caused by the index-of-refraction variations of the atmosphere, the phase and amplitude fluctuations of the propagating wave are computed. New theory is presented, that uses the diffraction-based propagation model to yield optical transfer function (OTF) expressions that are more accurate as compared to current theory that neglects diffraction. An evaluation method for calculating the OTF is presented that utilizes a layered atmospheric model and normalized OTF expressions. The diffraction model is also used to present the first OTF signal-to-noise ratio …


Spatio-Temporal Pattern Recognition Using Hidden Markov Models, Kenneth H. Fielding Jun 1994

Spatio-Temporal Pattern Recognition Using Hidden Markov Models, Kenneth H. Fielding

Theses and Dissertations

A new spatio-temporal method for identifying 3D objects found in 2D image sequences is presented. The Hidden Markov Model technique is used as a spatio-temporal classification algorithm to identify 3D objects by the temporal changes in observed shape features. A new information theoretic argument is developed that proves identifying objects based on image sequences can lead to higher classification accuracies than single look methods. A new distance measure is proposed that analyzes the performance of Hidden Markov Models in a multi-class pattern recognition problem. A three class problem identifying moving light display objects provides experimental verification of the sequence processing …


Feasibility Analysis For Predicting A Kinetic Kill Zone For Aircraft Homing Missile Defense, Mark E. Ennis Mar 1994

Feasibility Analysis For Predicting A Kinetic Kill Zone For Aircraft Homing Missile Defense, Mark E. Ennis

Theses and Dissertations

An extended Kalman filter is used to predict a kinetic kill zone for use in aircraft self defense versus homing missiles. The analysis is limited to an in-the-plane analysis and focuses on finding the model parameters which have the largest impact on the predicted kill zone. No attempt is made to optimize the design of the filter model itself. The analysis computes the kill zone relative to an assumed aircraft trajectory using strictly filter computed statistics. No Monte-Carlo simulations are used throughout the thesis. The filter assumed to be on the evading aircraft, uses an onboard laser radar (ladar) to …


Optical Wavelet Transform For Fingerprint Identification, Robert P. Macdonald Dec 1993

Optical Wavelet Transform For Fingerprint Identification, Robert P. Macdonald

Theses and Dissertations

The Federal Bureau of Investigation FBI has recently sanctioned a wavelet fingerprint image compression algorithm developed for reducing storage requirements of digitized fingerprints. This research implements an optical wavelet transform of a fingerprint image, as the first step in an optical fingerprint identification process. Wavelet filters are created from computer generated holograms of biorthogonal wavelets, the same wavelets implemented in the FBI algorithm. Using a detour phase holographic technique, a complex binary filter mask is created with both symmetry and linear phase. The wavelet transform is implemented with continuous shift using an optical correlation between binarized fingerprints written on a …


Color Image Segmentation, Kimberley A. Mccrae Dec 1993

Color Image Segmentation, Kimberley A. Mccrae

Theses and Dissertations

The most difficult stage of automated target recognition ATR is segmentation. Current AFIT segmentation problems include faces and tactical targets previous efforts to segment these objects have used intensity and motion cues. This thesis develops a color preprocessing scheme to be used with the other segmentation techniques. A neural network is trained to identify the color of a desired object, eliminating all but that color from the scene. Gabor correlations and 2D wavelet transformations will be performed on stationary images and 3D wavelet transforms on multispectral data will incorporate color and motion detection into the machine visual system. The thesis …