Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

External Link

2012

Fermi energy

Articles 1 - 2 of 2

Full-Text Articles in Physics

Renormalization Of F Levels Away From The Fermi Energy In Electron Excitation Spectroscopies: Density-Functional Results For Nd2-Xcexcuo4, T. Jarlborg, B. Barbiellini, H. Lin, R. Markiewicz, A. Bansil Apr 2012

Renormalization Of F Levels Away From The Fermi Energy In Electron Excitation Spectroscopies: Density-Functional Results For Nd2-Xcexcuo4, T. Jarlborg, B. Barbiellini, H. Lin, R. Markiewicz, A. Bansil

Robert Markiewicz

Relaxation energies for photoemission where an occupied electronic state is excited and for inverse photoemission where an empty state is filled are calculated within the density-functional theory with application to Nd₂₋ₓCeₓCuO₄. The associated relaxation energies are obtained by computing differences in total energies between the ground state and an excited state in which one hole or one electron is added into the system. The relaxation energies of f electrons are found to be of the order of several eV’s, indicating that f bands will appear substantially away from the Fermi energy (EF) in their spectroscopic images, even if …


A Novel Direct Method Of Fermi Surface Determination Using Constant Initial Energy Angle-Scanned Photoemission Spectroscopy, M. Lindroos, A. Bansil Apr 2012

A Novel Direct Method Of Fermi Surface Determination Using Constant Initial Energy Angle-Scanned Photoemission Spectroscopy, M. Lindroos, A. Bansil

Arun Bansil

We show that a constant initial energy, angle-scanned (CIE-AS) photoemission spectrum for emission from the Fermi energy (EF) contains Fermi surface (FS) signatures which originate from density of states type indirect transitions. Such previously unrecognized FS features in a CIE-AS spectrum would provide a robust and straightforward means of determining Fermi surfaces. Furthermore, the associated photointensity should yield a new window on k⊥, dispersion related issues in materials. Extensive simulations of CIE-AS spectra from low index faces of Cu are presented within the framework of the one-step photoemission model in order to delineate the nature of these new spectral features.