Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao Nov 2020

Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao

Nanoscience and Microsystems ETDs

Classical potentials that are capable of describing charge transfer and charge polarization in complex systems are of central importance for classical atomistic simulation of biomolecules and materials. Current potentials—regardless of the system—do not generalize well, and, with the exception of highly-specialized empirical potentials tuned for specific systems, cannot describe chemical bond formation and breaking. The charge-transfer embedded atom method (CT-EAM), a formal, DFT-based extension to the original EAM for metals, has been developed to address these issues by modeling charge distortion and charge transfer in interacting systems using pseudoatom building blocks instead of the electron densities of isolated atoms. CT-EAM …


A Direct Mechanism Of Ultrafast Intramolecular Singlet Fission In Pentacene Dimers, Eric G. Fuemmeler, Samuel N. Sanders, Andrew B. Pun, Elango Kumarasamy, Tao Zeng, Kiyoshi Miyata, Michael L. Steigerwald, X.-Y. Zhu, Matthew Y. Sfeir, Luis M. Campos, Nandini Ananth May 2016

A Direct Mechanism Of Ultrafast Intramolecular Singlet Fission In Pentacene Dimers, Eric G. Fuemmeler, Samuel N. Sanders, Andrew B. Pun, Elango Kumarasamy, Tao Zeng, Kiyoshi Miyata, Michael L. Steigerwald, X.-Y. Zhu, Matthew Y. Sfeir, Luis M. Campos, Nandini Ananth

Publications and Research

Interest in materials that undergo singlet fission (SF) has been catalyzed by the potential to exceed the Shockley–Queisser limit of solar power conversion efficiency. In conventional materials, the mechanism of SF is an intermolecular process (xSF), which is mediated by charge transfer (CT) states and depends sensitively on crystal packing or molecular collisions. In contrast, recently reported covalently coupled pentacenes yield ∼2 triplets per photon absorbed in individual molecules: the hallmark of intramolecular singlet fission (iSF). However, the mechanism of iSF is unclear. Here, using multireference electronic structure calculations and transient absorption spectroscopy, we establish that iSF can occur via …