Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry

2021

Institution
Keyword
Publication
Publication Type

Articles 1 - 22 of 22

Full-Text Articles in Physics

Self-Assembly Of Black Cumin Oil-Based Nanoemulsion On Various Surfactants: A Molecular Dynamics Study, Aulia Fikri Hidayat, Taufik Muhammad Fakih Dec 2021

Self-Assembly Of Black Cumin Oil-Based Nanoemulsion On Various Surfactants: A Molecular Dynamics Study, Aulia Fikri Hidayat, Taufik Muhammad Fakih

Makara Journal of Science

Black cumin is commonly used as traditional medicine due to its wide range of pharmacological potential. Black cumin oil (BCO) was often prepared as nanoemulsion to improve its solubility, stability, and bioavailability. This study was conducted to investigate the molecular behavior as well as structural evolution of BCO-surfactant systems during self-assembly micellization using molecular dynamics (MD) simulations. Several BCO constituents and variations of surfactants were employed to model BCO-surfactant systems. 50 ns of MD simulations were performed to elucidate their evolution of structures and physicochemical properties during formation. Results showed that BCO-tween20 and BCO-lecithin were able to form spherical-shaped micelles …


A Nanoscale Shape-Discovery Framework Supporting Systematic Investigations Of Shape-Dependent Biological Effects And Immunomodulation, Wei Zhang, Hender Lopez, Luca Boselli, Paolo Bigini, André Perez-Potti, Zengchun Xie, Valentina Castagnola, Qi Cai, Camila P. Silveira, Joao M. De Araujo, Laura Talamini, Nicolò Panini, Giuseppe Ristagno, Martina B. Violatto, Stéphanie Devineau, Marco P. Monopoli, Mario Salmona, Valeria A. Giannone, Sandra Lara, Kenneth A. Dawson, Yan Yan Dec 2021

A Nanoscale Shape-Discovery Framework Supporting Systematic Investigations Of Shape-Dependent Biological Effects And Immunomodulation, Wei Zhang, Hender Lopez, Luca Boselli, Paolo Bigini, André Perez-Potti, Zengchun Xie, Valentina Castagnola, Qi Cai, Camila P. Silveira, Joao M. De Araujo, Laura Talamini, Nicolò Panini, Giuseppe Ristagno, Martina B. Violatto, Stéphanie Devineau, Marco P. Monopoli, Mario Salmona, Valeria A. Giannone, Sandra Lara, Kenneth A. Dawson, Yan Yan

Articles

Since it is now possible to make, in a controlled fashion, an almost unlimited variety of nanostructure shapes, it is of increasing interest to understand the forms of biological control that nanoscale shape allows. However, a priori rational investigation of such a vast universe of shapes appears to present intractable fundamental and practical challenges. This has limited the useful systematic investigation of their biological interactions and the development of innovative nanoscale shape-dependent therapies. Here, we introduce a concept of biologically relevant inductive nanoscale shape discovery and evaluation that is ideally suited to, and will ultimately become, a vehicle for machine …


Splashing Of Large Helium Nanodroplets Upon Surface Collisions, Paul Martini, Simon Albertini, Felix Laimer, Miriam Meyer, Michael Gatchell, Olof E. Echt, Fabio Zappa, Paul Scheier Dec 2021

Splashing Of Large Helium Nanodroplets Upon Surface Collisions, Paul Martini, Simon Albertini, Felix Laimer, Miriam Meyer, Michael Gatchell, Olof E. Echt, Fabio Zappa, Paul Scheier

Faculty Publications

In the present work we observe that helium nanodroplets colliding with surfaces can exhibit splashing in a way that is analogous to classical liquids. We use transmission electron microscopy and mass spectrometry to demonstrate that neutral and ionic dopants embedded in the droplets are efficiently backscattered in such events. High abundances of weakly bound He-tagged ions of both polarities indicate a gentle extraction mechanism of these ions from the droplets upon collision with a solid surface. This backscattering process is observed for dopant particles with masses up to 400 kilodaltons, indicating an unexpected mechanism that effectively lowers deposition rates of …


Adsorption Of Helium On A Charged Propeller Molecule: Hexaphenylbenzene, Siegfried Kollotzek, Florent Calvo, Serge Krasnokutski, Fabio Zappa, Paul Scheier, Olof E. Echt Nov 2021

Adsorption Of Helium On A Charged Propeller Molecule: Hexaphenylbenzene, Siegfried Kollotzek, Florent Calvo, Serge Krasnokutski, Fabio Zappa, Paul Scheier, Olof E. Echt

Faculty Publications

Physisorption on planar or curved graphitic surfaces or aromatic rings has been investigated by various research groups, but in these studies the substrate was usually strictly rigid. Here we report a combined experimental and theoretical study of helium adsorption on cationic hexaphenylbenzene (HPB), a propeller-shaped molecule. The orientation of its propeller blades is known to be sensitive to the environment, with substantial differences between the molecule in the gas phase and in the crystalline solid. Mass spectra of HenHPB+, synthesized in helium nanodroplets, indicate enhanced stability for ions containing n = 2, 4, 14, 28, 42, …


The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr Nov 2021

The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr

Nanoscience and Microsystems ETDs

Through-bond and through-space interactions between chromophores are shown to have wide-ranging effects on photophysical outcomes upon light absorption in organic molecules. In collapsed poly(3-hexylthiophene), through-space coupling creates hybrid chromophores that act as energy sinks for nearby excitons and favorable sites for molecular oxygen to dock. Upon excitation with visible light the highly-coupled chromophores react with the docked oxygen and subsequently do not quench nearby excitons as efficiently. In tetramer arrays of perylene diimide chromophores the central moiety through-bond connectivity is synthesized in two variants which exhibit vastly different single-molecule blinking behavior and theoretically-predicted electronic transition character. In the more-connected tetramer …


Single-Molecule Localization Microscopy Of 3d Orientation And Anisotropic Wobble Using A Polarized Vortex Point Spread Function, Tianben Ding, Matthew D. Lew Nov 2021

Single-Molecule Localization Microscopy Of 3d Orientation And Anisotropic Wobble Using A Polarized Vortex Point Spread Function, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Within condensed matter, single fluorophores are sensitive probes of their chemical environments, but it is difficult to use their limited photon budget to image precisely their positions, 3D orientations, and rotational diffusion simultaneously. We demonstrate the polarized vortex point spread function (PSF) for measuring these parameters, including characterizing the anisotropy of a molecule’s wobble, simultaneously from a single image. Even when imaging dim emitters (∼500 photons detected), the polarized vortex PSF can obtain 12 nm localization precision, 4°–8° orientation precision, and 26° wobble precision. We use the vortex PSF to measure the emission anisotropy of fluorescent beads, the wobble dynamics …


Bridging The 12-6-4 Model And The Fluctuating Charge Model, Pengfei Li Jul 2021

Bridging The 12-6-4 Model And The Fluctuating Charge Model, Pengfei Li

Chemistry: Faculty Publications and Other Works

Metal ions play important roles in various biological systems. Molecular dynamics (MD) using classical force field has become a popular research tool to study biological systems at the atomic level. However, meaningful MD simulations require reliable models and parameters. Previously we showed that the 12-6 Lennard-Jones nonbonded model for ions could not reproduce the experimental hydration free energy (HFE) and ion-oxygen distance (IOD) values simultaneously when ion has a charge of +2 or higher. We discussed that this deficiency arises from the overlook of the ion-induced dipole interaction in the 12-6 model, and this term is proportional to 1/r …


Awegnn: Auto-Parametrized Weighted Element-Specific Graph Neural Networks For Molecules., Timothy Szocinski, Duc Duy Nguyen, Guo-Wei Wei Jul 2021

Awegnn: Auto-Parametrized Weighted Element-Specific Graph Neural Networks For Molecules., Timothy Szocinski, Duc Duy Nguyen, Guo-Wei Wei

Mathematics Faculty Publications

While automated feature extraction has had tremendous success in many deep learning algorithms for image analysis and natural language processing, it does not work well for data involving complex internal structures, such as molecules. Data representations via advanced mathematics, including algebraic topology, differential geometry, and graph theory, have demonstrated superiority in a variety of biomolecular applications, however, their performance is often dependent on manual parametrization. This work introduces the auto-parametrized weighted element-specific graph neural network, dubbed AweGNN, to overcome the obstacle of this tedious parametrization process while also being a suitable technique for automated feature extraction on these internally complex …


Recovery Of High Specific Activity Molybdenum-99 From Accelerator-Induced Fission On Low-Enriched Uranium For Technetium-99m Generators, M. Alex Brown, Nathan Johnson, Artem V. Gelis, Milan Stika, Anna G. Servis, Alex Bakken, Christine Krizmanich, Kristin Shannon, Peter Kozak, Amanda Barnhart, Chad Denbrock, Nicolas Luciani, Terry Grimm, Peter Tkac Jun 2021

Recovery Of High Specific Activity Molybdenum-99 From Accelerator-Induced Fission On Low-Enriched Uranium For Technetium-99m Generators, M. Alex Brown, Nathan Johnson, Artem V. Gelis, Milan Stika, Anna G. Servis, Alex Bakken, Christine Krizmanich, Kristin Shannon, Peter Kozak, Amanda Barnhart, Chad Denbrock, Nicolas Luciani, Terry Grimm, Peter Tkac

Chemistry and Biochemistry Faculty Research

A new process was developed to recover high specific activity (no carrier added) 99Mo from electron-accelerator irradiated U3O8 or uranyl sulfate targets. The process leverages a novel solvent extraction scheme to recover Mo using di(2-ethylhexyl) phosphoric acid following uranium and transuranics removal with tri-n-butyl phosphate. An anion-exchange concentration column step provides a final purification, generating pure 99Mo intended for making 99Mo/99mTc generators. The process was demonstrated with irradiated uranium targets resulting in more than 95% 99Mo recovery and without presence of fission products or actinides in the product.


Β -Technetium: An Allotrope With A Nonstandard Volume-Pressure Relationship, Emily Siska, Dean Smith, Christian Childs, Daniel Koury, Paul M. Forster, Keith V. Lawler, Ashkan Salamat Jun 2021

Β -Technetium: An Allotrope With A Nonstandard Volume-Pressure Relationship, Emily Siska, Dean Smith, Christian Childs, Daniel Koury, Paul M. Forster, Keith V. Lawler, Ashkan Salamat

Chemistry and Biochemistry Faculty Research

We report the synthesis and structure of the second allotrope of technetium, β-Tc. Transformative pathways are accessed at extreme conditions using the laser-heated diamond anvil cell and confirmed with in situ synchrotron x-ray diffraction and Raman spectroscopy. β-Tc is fully recoverable to ambient conditions, although counter to our DFT calculations predicting a face-centered-cubic lattice, we observe a tetragonal structure (I4/mmm) that exhibits further tetragonal distortion with pressure. β-Tc has an expanded volume relative to the hcp ground state phase, that when doped with nitrogen has an unexpected volume lowering. Such anomalous behavior is possibly indicative of a rare electronic phase …


Complexes With Atomic Gold Ions: Efficient Bisligand Formation, Felix Duensing, Elisabeth Gruber, Paul Martini, Marcelo Goulart, Michael Gatchell, Bilal Rasul, Olof E. Echt, Fabio Zappa, Masoomeh Mahmoodi-Darian, Paul Scheier Jun 2021

Complexes With Atomic Gold Ions: Efficient Bisligand Formation, Felix Duensing, Elisabeth Gruber, Paul Martini, Marcelo Goulart, Michael Gatchell, Bilal Rasul, Olof E. Echt, Fabio Zappa, Masoomeh Mahmoodi-Darian, Paul Scheier

Faculty Publications

Complexes of atomic gold with a variety of ligands have been formed by passing helium nanodroplets (HNDs) through two pickup cells containing gold vapor and the vapor of another dopant, namely a rare gas, diatomic molecule (H2, N2, O2, I2, P2), or various polyatomic molecules (H2O, CO2, SF6, C6H6, adamantane, imidazole, di-cyclopentadiene, and fullerene). The doped HNDs were irradiated by electrons; ensuing cations were identified in a high-resolution mass spectrometer. Anions were detected for benzene, di-cyclopentadiene, and fullerene. For most …


Colossal Density-Driven Resistance Response In The Negative Charge Transfer Insulator Mns2, Dylan Durkee, Nathan Dasenbrock-Gammon, G. Alexander Smith, Elliot Snider, Dean Smith, Christian Childs, Simon A.J. Kimber, Keith V. Lawler, Ranga P. Dias, Ashkan Salamat Jun 2021

Colossal Density-Driven Resistance Response In The Negative Charge Transfer Insulator Mns2, Dylan Durkee, Nathan Dasenbrock-Gammon, G. Alexander Smith, Elliot Snider, Dean Smith, Christian Childs, Simon A.J. Kimber, Keith V. Lawler, Ranga P. Dias, Ashkan Salamat

Chemistry and Biochemistry Faculty Research

A reversible density driven insulator to metal to insulator transition in high-spin MnS2 is experimentally observed, leading with a colossal electrical resistance drop of 108 ω by 12 GPa. Density functional theory simulations reveal the metallization to be unexpectedly driven by previously unoccupied S22- σ3p∗ antibonding states crossing the Fermi level. This is a unique variant of the charge transfer insulator to metal transition for negative charge transfer insulators having anions with an unsaturated valence. By 36 GPa the emergence of the low-spin insulating arsenopyrite (P21/c) is confirmed, and the bulk metallicity is broken with the system returning to an …


A Theoretical Study Of Synchronous Proton Transfer In (Hf)N, (H2O) N, And (Hcl) N Where N = 3, 4, 5, Johnny Yang May 2021

A Theoretical Study Of Synchronous Proton Transfer In (Hf)N, (H2O) N, And (Hcl) N Where N = 3, 4, 5, Johnny Yang

Honors Theses

For (HF)n, (H2O)n, and (HCl)n (n = 3 − 5), we have rigorously characterized the structures for the minima and transition states for synchronous proton transfer (SPT) with the CCSD(T) method and aug-cc-pVTZ basis set. The electronic barrier heights (∆E) associated with these transition states have also been computed with the explicitly correlated CCSD(T)-F12 method and the aug-cc-pVQZ-F12 basis set (abbreviated aQZ-F12). (HCl)n (n = 3 − 5) SPT transition states have not been previously identified to the best of our knowledge, and they have been found …


Sf6+: Stabilizing Transient Ions In Helium Nanodroplets, Simon Albertini, Stefan Bergmeister, Felix Laimer, Paul Martini, Elisabeth Gruber, Fabio Zappa, Milan Ončák, Paul Scheier, Olof E. Echt Apr 2021

Sf6+: Stabilizing Transient Ions In Helium Nanodroplets, Simon Albertini, Stefan Bergmeister, Felix Laimer, Paul Martini, Elisabeth Gruber, Fabio Zappa, Milan Ončák, Paul Scheier, Olof E. Echt

Faculty Publications

There are myriads of ions that are deemed too short-lived to be experimentally accessible. One of them is SF6+. It has never been observed, although not for lack of trying. We demonstrate that long-lived SF6+ can be formed by doping charged helium nanodroplets (HNDs) with sulfur hexafluoride; excess helium is then gently stripped from the doped HNDs by collisions with helium gas. The ion is identified by high-resolution mass spectrometry (resolution m/Dm = 15000), the close agreement between the expected and observed yield of ions that contain minor sulfur isotopes, and collision-induced dissociation …


Direct Detection Of 5-Mev Protons By Flexible Organic Thin-Film Devices, Ilaria Fratelli, Andrea Ciavatti, Enrico Zanazzi, Laura Basiricò, Massimo Chiari, Laura Fabbri, John E. Anthony, Alberto Quaranta, Beatrice Fraboni Apr 2021

Direct Detection Of 5-Mev Protons By Flexible Organic Thin-Film Devices, Ilaria Fratelli, Andrea Ciavatti, Enrico Zanazzi, Laura Basiricò, Massimo Chiari, Laura Fabbri, John E. Anthony, Alberto Quaranta, Beatrice Fraboni

Chemistry Faculty Publications

The direct detection of 5-MeV protons by flexible organic detectors based on thin films is here demonstrated. The organic devices act as a solid-state detector, in which the energy released by the protons within the active layer of the sensor is converted into an electrical current. These sensors can quantitatively and reliably measure the dose of protons impinging on the sensor both in real time and in integration mode. This study shows how to detect and exploit the energy absorbed both by the organic semiconducting layer and by the plastic substrate, allowing to extrapolate information on the present and past …


Complex Fluid Dynamics: Chemo-Hydrodynamics Driven By Autocatalytic Reaction Fronts, Matthew Walter Eskew Mar 2021

Complex Fluid Dynamics: Chemo-Hydrodynamics Driven By Autocatalytic Reaction Fronts, Matthew Walter Eskew

Dissertations and Theses

Chemo-hydrodynamics generated from reaction-diffusion-convection processes of autocatalytic chemical systems are extensively studied for their applications in modeling complex systems. Compared to the more extensively studied autocatalytic systems, chlorite-tetrathionate and chlorite-trithionate, the chlorite-thiourea systems is relatively unexplored. Compared to the two previous systems, chlorite-thiourea has more straightforward chemical kinetics. To narrow the gap between chlorite-thiourea and the other systems a combination of experimental study and numerical simulation were employed to quantify this system.

Compared to established literature, experiments were performed at five orders of magnitude lower concentration of indicator, minimizing confounding effects of indicator on hydrodynamic motion. To accurately image the …


Electronic Transitions In Rb2+ Dimers Solvated In Helium, Simon Albertini, Paul Martini, Arne Schiller, Harald Schöbel, Elham Ghavidel, Milan Ončák, Olof E. Echt, Paul Scheier Mar 2021

Electronic Transitions In Rb2+ Dimers Solvated In Helium, Simon Albertini, Paul Martini, Arne Schiller, Harald Schöbel, Elham Ghavidel, Milan Ončák, Olof E. Echt, Paul Scheier

Faculty Publications

We have measured depletion spectra of the heteronuclear (85Rb87Rb+) dimer cation complexed with up to 10 He atoms. Two absorption bands are observed between 920 and 250 nm. The transition into the repulsive 12Sigmau+ state of HeRb2+ gives rise to a broad feature at 790 nm (12650 cm–1); it exhibits a blueshift of 98 cm–1 per added He atom. The transition into the bound 1 2Piu state of HeRb2+ reveals vibrational structure with a band head at < 15522 cm–1, a harmonic …


Determination Of The Rydberg Constant From The Emission Spectra Of H And He+, Kyle D. Shaffer Feb 2021

Determination Of The Rydberg Constant From The Emission Spectra Of H And He+, Kyle D. Shaffer

Ramifications

Abstract

In this experiment, the Rydberg constants for the hydrogen atom and He+ were determined by analysis of the emission spectra of Hand He, respectively, in comparison to the principal quantum numbers of each transition. Using both a hydrogen and then a helium atomic lamp attached to a 0.5 m grating spectrometer and a photomultiplier detector (PMT), a change in voltage detected by the PMT can be paired with a corresponding wavelength passing through the spectrometer from each emission peak in the visible to ultraviolet range. The peaks acquired from this change in voltage were analyzed to find their …


Computational Modelling Enables Robust Multidimensional Nanoscopy, Matthew D. Lew Feb 2021

Computational Modelling Enables Robust Multidimensional Nanoscopy, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

The following sections are included:

  • Present State of Computational Modelling in Fluorescence Nanoscopy

  • Recent Contributions to Computational Modelling in Fluorescence Nanoscopy

  • Outlook on Computational Modelling in Fluorescence Nanoscopy

  • Acknowledgments

  • References


Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead Jan 2021

Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead

Theses and Dissertations

Metal-silicon nanostructures are a growing area of research due to their applications in multiple fields such as biosensing and catalysis. In addition, silicon can provide strong support effects to metal nanoparticles while being more cost effective than traditionally used supports, like titania. Traditional wet-chemical methods are capable of synthesizing metal-silicon nanostructures with a variety of composition and nanoparticle shapes, but they often require high temperatures, toxic solvents, strong reducing agents, or need capping agents added to stabilize the nanoparticles. Laser processing is an emerging technique capable of synthesizing metal-silicon composite surfaces that offers a faster, simpler, and greener synthesis route …


Environmental Modifications Of Atomic Properties: The Ground And 1s2p Excited States Of Compressed Helium, N. C. Pyper, T. C. Naginey, Colm T. Whelan Jan 2021

Environmental Modifications Of Atomic Properties: The Ground And 1s2p Excited States Of Compressed Helium, N. C. Pyper, T. C. Naginey, Colm T. Whelan

Physics Faculty Publications

Atoms remaining as recognizably distinct constituents of bulk condensed phases can have properties modified from those of the isolated species. Dense helium bubbles at high pressures are a common form of radiation damage degrading the mechanical and electrical properties of host materials. Detailed knowledge is critical for predicting their long term performance. Modifications of the ground and first singlet excited states of confined compressed helium are investigated using an entirely non-empirical theory based on the results of ab initio self-consistent field calculations with corrections for the effects of electron correlation. For finite sized portions representing bulk condensed fcc and bcc …


Predicting Material Properties: Applications Of Multi-Scale Multiphysics Numerical Modeling To Transport Problems In Biochemical Systems And Chemical Process Engineering, Tom Pace Jan 2021

Predicting Material Properties: Applications Of Multi-Scale Multiphysics Numerical Modeling To Transport Problems In Biochemical Systems And Chemical Process Engineering, Tom Pace

Theses and Dissertations--Physics and Astronomy

Material properties are used in a wide variety of theoretical models of material behavior. Descriptive properties quantify the nature, structure, or composition of the material. Behavioral properties quantify the response of the material to an imposed condition. The central question of this work concerns the prediction of behavioral properties from previously determined descriptive properties through hierarchical multi-scale, multiphysics models implemented as numerical simulations. Applications covered focus on mass transport models, including sequential enzyme-catalyzed reactions in systems biology, and an industrial chemical process in a common reaction medium.