Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr Nov 2021

The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr

Nanoscience and Microsystems ETDs

Through-bond and through-space interactions between chromophores are shown to have wide-ranging effects on photophysical outcomes upon light absorption in organic molecules. In collapsed poly(3-hexylthiophene), through-space coupling creates hybrid chromophores that act as energy sinks for nearby excitons and favorable sites for molecular oxygen to dock. Upon excitation with visible light the highly-coupled chromophores react with the docked oxygen and subsequently do not quench nearby excitons as efficiently. In tetramer arrays of perylene diimide chromophores the central moiety through-bond connectivity is synthesized in two variants which exhibit vastly different single-molecule blinking behavior and theoretically-predicted electronic transition character. In the more-connected tetramer …


A Theoretical Study Of Synchronous Proton Transfer In (Hf)N, (H2O) N, And (Hcl) N Where N = 3, 4, 5, Johnny Yang May 2021

A Theoretical Study Of Synchronous Proton Transfer In (Hf)N, (H2O) N, And (Hcl) N Where N = 3, 4, 5, Johnny Yang

Honors Theses

For (HF)n, (H2O)n, and (HCl)n (n = 3 − 5), we have rigorously characterized the structures for the minima and transition states for synchronous proton transfer (SPT) with the CCSD(T) method and aug-cc-pVTZ basis set. The electronic barrier heights (∆E) associated with these transition states have also been computed with the explicitly correlated CCSD(T)-F12 method and the aug-cc-pVQZ-F12 basis set (abbreviated aQZ-F12). (HCl)n (n = 3 − 5) SPT transition states have not been previously identified to the best of our knowledge, and they have been found …


Complex Fluid Dynamics: Chemo-Hydrodynamics Driven By Autocatalytic Reaction Fronts, Matthew Walter Eskew Mar 2021

Complex Fluid Dynamics: Chemo-Hydrodynamics Driven By Autocatalytic Reaction Fronts, Matthew Walter Eskew

Dissertations and Theses

Chemo-hydrodynamics generated from reaction-diffusion-convection processes of autocatalytic chemical systems are extensively studied for their applications in modeling complex systems. Compared to the more extensively studied autocatalytic systems, chlorite-tetrathionate and chlorite-trithionate, the chlorite-thiourea systems is relatively unexplored. Compared to the two previous systems, chlorite-thiourea has more straightforward chemical kinetics. To narrow the gap between chlorite-thiourea and the other systems a combination of experimental study and numerical simulation were employed to quantify this system.

Compared to established literature, experiments were performed at five orders of magnitude lower concentration of indicator, minimizing confounding effects of indicator on hydrodynamic motion. To accurately image the …


Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead Jan 2021

Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead

Theses and Dissertations

Metal-silicon nanostructures are a growing area of research due to their applications in multiple fields such as biosensing and catalysis. In addition, silicon can provide strong support effects to metal nanoparticles while being more cost effective than traditionally used supports, like titania. Traditional wet-chemical methods are capable of synthesizing metal-silicon nanostructures with a variety of composition and nanoparticle shapes, but they often require high temperatures, toxic solvents, strong reducing agents, or need capping agents added to stabilize the nanoparticles. Laser processing is an emerging technique capable of synthesizing metal-silicon composite surfaces that offers a faster, simpler, and greener synthesis route …


Predicting Material Properties: Applications Of Multi-Scale Multiphysics Numerical Modeling To Transport Problems In Biochemical Systems And Chemical Process Engineering, Tom Pace Jan 2021

Predicting Material Properties: Applications Of Multi-Scale Multiphysics Numerical Modeling To Transport Problems In Biochemical Systems And Chemical Process Engineering, Tom Pace

Theses and Dissertations--Physics and Astronomy

Material properties are used in a wide variety of theoretical models of material behavior. Descriptive properties quantify the nature, structure, or composition of the material. Behavioral properties quantify the response of the material to an imposed condition. The central question of this work concerns the prediction of behavioral properties from previously determined descriptive properties through hierarchical multi-scale, multiphysics models implemented as numerical simulations. Applications covered focus on mass transport models, including sequential enzyme-catalyzed reactions in systems biology, and an industrial chemical process in a common reaction medium.