Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physics

The Effect Of Ionization Density In Applications Of Radiation Detection, Dosimetry, And Therapy, Daniel Mulrow Dec 2022

The Effect Of Ionization Density In Applications Of Radiation Detection, Dosimetry, And Therapy, Daniel Mulrow

Arts & Sciences Electronic Theses and Dissertations

This dissertation covers a wide range of topics but is linked by the common theme of radiation interacting with materials and studying the result of those interactions. The introduction describes the fundamentals of how radiation interacts with material and how we are able to detect that radiation and the application of how we use those interactions in radiation oncology. The thesis starts with a chapter detailing the temperature dependence of the photophysics in two organic scintillators. This chapter is the foundation for a future study that will look the degree to which these scintillators can distinguish between gammas and neutrons …


Resolving The Three-Dimensional Rotational And Translational Dynamics Of Single Molecules Using Radially And Azimuthally Polarized Fluorescence, Oumeng Zhang, Weiyan Zhou, Jin Lu, Tingting Wu, Matthew D. Lew Jan 2022

Resolving The Three-Dimensional Rotational And Translational Dynamics Of Single Molecules Using Radially And Azimuthally Polarized Fluorescence, Oumeng Zhang, Weiyan Zhou, Jin Lu, Tingting Wu, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We report a radially and azimuthally polarized (raPol) microscope for high detection and estimation performance in single-molecule orientation-localization microscopy (SMOLM). With 5000 photons detected from Nile red (NR) transiently bound within supported lipid bilayers (SLBs), raPol SMOLM achieves 2.9 nm localization precision, 1.5° orientation precision, and 0.17 sr precision in estimating rotational wobble. Within DPPC SLBs, SMOLM imaging reveals the existence of randomly oriented binding pockets that prevent NR from freely exploring all orientations. Treating the SLBs with cholesterol-loaded methyl-β-cyclodextrin (MβCD-chol) causes NR’s orientational diffusion to be dramatically reduced, but curiously NR’s median lateral displacements drastically increase from 20.8 to …


Single-Molecule Localization Microscopy Of 3d Orientation And Anisotropic Wobble Using A Polarized Vortex Point Spread Function, Tianben Ding, Matthew D. Lew Nov 2021

Single-Molecule Localization Microscopy Of 3d Orientation And Anisotropic Wobble Using A Polarized Vortex Point Spread Function, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Within condensed matter, single fluorophores are sensitive probes of their chemical environments, but it is difficult to use their limited photon budget to image precisely their positions, 3D orientations, and rotational diffusion simultaneously. We demonstrate the polarized vortex point spread function (PSF) for measuring these parameters, including characterizing the anisotropy of a molecule’s wobble, simultaneously from a single image. Even when imaging dim emitters (∼500 photons detected), the polarized vortex PSF can obtain 12 nm localization precision, 4°–8° orientation precision, and 26° wobble precision. We use the vortex PSF to measure the emission anisotropy of fluorescent beads, the wobble dynamics …


Computational Modelling Enables Robust Multidimensional Nanoscopy, Matthew D. Lew Feb 2021

Computational Modelling Enables Robust Multidimensional Nanoscopy, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

The following sections are included:

  • Present State of Computational Modelling in Fluorescence Nanoscopy

  • Recent Contributions to Computational Modelling in Fluorescence Nanoscopy

  • Outlook on Computational Modelling in Fluorescence Nanoscopy

  • Acknowledgments

  • References


Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew Sep 2020

Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules μm−2) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single‐molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus “wobble”) of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve …


Nanoscale Colocalization Of Fluorogenic Probes Reveals The Role Of Oxygen Vacancies In The Photocatalytic Activity Of Tungsten Oxide Nanowires, Meikun Shen, Tianben Ding, Steven T. Hartman, Fudong Wang, Christina Krucylak, Zheyu Wang, Che Tan, Bo Yin, Rohan Mishra, Matthew D. Lew, Bryce Sadtler Jan 2020

Nanoscale Colocalization Of Fluorogenic Probes Reveals The Role Of Oxygen Vacancies In The Photocatalytic Activity Of Tungsten Oxide Nanowires, Meikun Shen, Tianben Ding, Steven T. Hartman, Fudong Wang, Christina Krucylak, Zheyu Wang, Che Tan, Bo Yin, Rohan Mishra, Matthew D. Lew, Bryce Sadtler

Electrical & Systems Engineering Publications and Presentations

Defect engineering is a strategy that has been widely used to design active semiconductor photocatalysts. However, understanding the role of defects, such as oxygen vacancies, in controlling photocatalytic activity remains a challenge. Here, we report the use of chemically triggered fluorogenic probes to study the spatial distribution of active regions in individual tungsten oxide nanowires using super-resolution fluorescence microscopy. The nanowires show significant heterogeneity along their lengths for the photocatalytic generation of hydroxyl radicals. Through quantitative, coordinate-based colocalization of multiple probe molecules activated by the same nanowires, we demonstrate that the nanoscale regions most active for the photocatalytic generation of …


Erratum: "Imaging The Three‐Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri‐Spot Point Spread Function", Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew Aug 2019

Erratum: "Imaging The Three‐Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri‐Spot Point Spread Function", Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

In the original paper, a calibration error exists in the image-formation model used to analyze experimental images taken by our microscope, causing a bias in the orientation measurements in Figs. 2 and 3. The updated measurements are shown in Fig. E1. We have also updated the supplementary material for the original article to discuss the revised PSF model and estimation algorithms (supplementary material 2) and show the revised model and measurements (Figs. S1, S3, S7, S8, and S10–S13).


Fundamental Limits Of Measuring Single-Molecule Rotational Mobility, Oumeng Zhang, Matthew D. Lew Feb 2019

Fundamental Limits Of Measuring Single-Molecule Rotational Mobility, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Various methods exist for measuring molecular orientation, thereby providing insight into biochemical activities at nanoscale. Since fluorescence intensity and not electric field is detected, these methods are limited to measuring even-order moments of molecular orientation. However, any measurement noise, for example photon shot noise, will result in nonzero measurements of any of these even-order moments, thereby causing rotationally-free molecules to appear to be partially constrained. Here, we build a model to quantify measurement errors in rotational mobility. Our theoretical framework enables scientists to choose the optimal single-molecule orientation measurement technique for any desired measurement accuracy and photon budget.


Instrumentation For Cryogenic Dynamic Nuclear Polarization And Electron Decoupling In Rotating Solids, Faith Joellen Scott Aug 2018

Instrumentation For Cryogenic Dynamic Nuclear Polarization And Electron Decoupling In Rotating Solids, Faith Joellen Scott

Arts & Sciences Electronic Theses and Dissertations

Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) using the higher polarization of electron radical spins compared to nuclear spins. The addition of electron radicals for DNP to the sample can cause hyperfine broadening, which decreases the resolution of the NMR resonances due to hyperfine interactions between electron and nuclear spins. Electron decoupling has been shown to attenuate the effects of hyperfine coupling in rotating solids. Magic angle spinning (MAS) DNP with electron decoupling requires a high electron Rabi frequency provided by a high-power microwave source such as a frequency-agile gyrotron. This dissertation describes the development …


Super‐Resolution Imaging Of Amyloid Structures Over Extended Times By Using Transient Binding Of Single Thioflavin T Molecules, Kevin Spehar, Tianben Ding, Yuanzi Sun, Niraja Kedia, Jin Lu, George R. Nahass, Matthew D. Lew, Jan Bieschke Jun 2018

Super‐Resolution Imaging Of Amyloid Structures Over Extended Times By Using Transient Binding Of Single Thioflavin T Molecules, Kevin Spehar, Tianben Ding, Yuanzi Sun, Niraja Kedia, Jin Lu, George R. Nahass, Matthew D. Lew, Jan Bieschke

Electrical & Systems Engineering Publications and Presentations

Oligomeric amyloid structures are crucial therapeutic targets in Alzheimer's and other amyloid diseases. However, these oligomers are too small to be resolved by standard light microscopy. We have developed a simple and versatile tool to image amyloid structures by using thioflavin T without the need for covalent labeling or immunostaining. The dynamic binding of single dye molecules generates photon bursts that are used for fluorophore localization on a nanometer scale. Thus, photobleaching cannot degrade image quality, allowing for extended observation times. Super‐resolution transient amyloid binding microscopy promises to directly image native amyloid by using standard probes and record amyloid dynamics …


Nuclear Spin Alignment In Optically Pumped Semiconductors, Matthew M. Willmering May 2017

Nuclear Spin Alignment In Optically Pumped Semiconductors, Matthew M. Willmering

Arts & Sciences Electronic Theses and Dissertations

Nuclear magnetic resonance (NMR) has shown its ability to be a very informative analytical technique due to the ability to measure very small changes in the energy splittings due to the nuclei’s local environment. However, this ability is hindered by the low sensitivity of the experiment. Many methods have been postulated and implemented to enhance the sensitivity of NMR experiments; one of which is optically pumped NMR (OPNMR). In this dissertation, the usefulness and potential applications of OPNMR are presented. First, a doubly resonant OPNMR probe was fabricated in order to complete more advanced NMR techniques while optically pumping the …


Design And Activation Of Frequency Tunable 200ghz Gyrotron, Natalie Golota, Faith Scott, Edward Saliba, Brice Albert, Alexander Barnes Jan 2017

Design And Activation Of Frequency Tunable 200ghz Gyrotron, Natalie Golota, Faith Scott, Edward Saliba, Brice Albert, Alexander Barnes

Undergraduate Research Symposium Posters

Dynamic Nuclear Polarization (DNP) when combined with Nuclear Magnetic Resonance (NMR) yields high sensitivity spectra while decreasing sample acquisition time. DNP transfers polarization from electron to nuclear spins, giving a strong enhancement of NMR signal. DNP is rapidly developing area of research due in part to application of cyclotron resonance masers (gyrotron) as high power microwave sources. Gyrotrons provide a high-power, high-frequency microwave source that can be used in close proximity to high field NMR magnets. Gyrotrons are operated under strong vacuum and within a cryogenic superconducting magnetic. Gyrotron microwave power is generated by a magnetron injection gun (MIG) composed …