Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Erratum: "Imaging The Three‐Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri‐Spot Point Spread Function", Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew Aug 2019

Erratum: "Imaging The Three‐Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri‐Spot Point Spread Function", Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

In the original paper, a calibration error exists in the image-formation model used to analyze experimental images taken by our microscope, causing a bias in the orientation measurements in Figs. 2 and 3. The updated measurements are shown in Fig. E1. We have also updated the supplementary material for the original article to discuss the revised PSF model and estimation algorithms (supplementary material 2) and show the revised model and measurements (Figs. S1, S3, S7, S8, and S10–S13).


Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew Jun 2018

Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Fluorescence photons emitted by single molecules contain rich information regarding their rotational motions, but adapting single-molecule localization microscopy (SMLM) to measure their orientations and rotational mobilities with high precision remains a challenge. Inspired by dipole radiation patterns, we design and implement a Tri-spot point spread function (PSF) that simultaneously measures the three-dimensional orientation and the rotational mobility of dipole-like emitters across a large field of view. We show that the orientation measurements done using the Tri-spot PSF are sufficiently accurate to correct the anisotropy-based localization bias, from 30 nm to 7 nm, in SMLM. We further characterize the emission anisotropy …


Study Of The Shrinkage Caused By Holographic Grating Formation In Acrylamide Based Photopolymer Film, Mohesh Moothanchery, Izabela Naydenova, Vincent Toal Jun 2011

Study Of The Shrinkage Caused By Holographic Grating Formation In Acrylamide Based Photopolymer Film, Mohesh Moothanchery, Izabela Naydenova, Vincent Toal

Articles

We study the shrinkage in acrylamide based photopolymer by measuring the Bragg detuning of transmission diffraction gratings recorded at different slant angles and at different intensities for a range of spatial frequencies. Transmission diffraction gratings of spatial frequencies 500, 1000, 1500 and 2000 lines/mm were recorded in an acrylamide based photopolymer film having 60 ± 5 μm thickness. The grating thickness and the final slant angles were obtained from the angular Bragg selectivity curve and hence the shrinkage caused by holographic recording was calculated. The shrinkage of the material was evaluated for three different recording intensities 1, 5 and 10 …


Characterisation Of An Acrylamide-Based Photopolymer For Data Storage Utilizing Holographic Angular Multiplexing, Hosam Sherif, Izabela Naydenova, Suzanne Martin, Colm Mcginn, Vincent Toal Jan 2005

Characterisation Of An Acrylamide-Based Photopolymer For Data Storage Utilizing Holographic Angular Multiplexing, Hosam Sherif, Izabela Naydenova, Suzanne Martin, Colm Mcginn, Vincent Toal

Articles

An acrylamide-based photopolymer formulated in the Centre for Industrial and Engineering Optics has been investigated with a view to further optimisation for holographic optical storage. Series of 18 to 30 gratings were angularly multiplexed in a volume of photopolymer layer at a spatial frequency of 1500 lines/mm. Since the photopolymer is a saturable material, an exposure scheduling method was used to exploit the entire dynamic range of the material and allow equal strength holographic gratings to be recorded. This investigation yielded the photopolymer M/# for moderately thin layers. Photopolymer temporal stability was also studied by measuring variations of material shrinkage, …


Tunable Liquid Crystal Photonic Devices, Yun-Hsing Fan Jan 2005

Tunable Liquid Crystal Photonic Devices, Yun-Hsing Fan

Electronic Theses and Dissertations

Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices and their fabrication methods. The devices presented include inhomogeneous polymer-dispersed liquid crystal (PDLC), polymer network liquid crystals (PNLC) and phase-separated composite film (PSCOF). Liquid crystal/polymer composites could exist in different forms depending on the fabrication conditions. In Chap. 3, we demonstrate a novel nanoscale PDLC device that has inhomogeneous droplet size distribution. In such a PDLC, the inhomogeneous droplet size distribution is obtained by exposing the …