Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Digital Holography And Applications In Microscopic Interferometry, Cody Jenkins Jun 2012

Digital Holography And Applications In Microscopic Interferometry, Cody Jenkins

Physics

In this project I demonstrate recording holograms using an electronic camera as the photosensitive element and subsequent numerical reconstruction in a digital computer. The technique is employed to show extended depth of field imaging as well as phase contrast imaging via microscopic interferometry.


Real Time Shrinkage Studies In Photopolymer Films Using Holographic Interferometry, Mohesh Moothanchery, Izabela Naydenova, Viswanath Bavigadda, Suzanne Martin, Vincent Toal May 2012

Real Time Shrinkage Studies In Photopolymer Films Using Holographic Interferometry, Mohesh Moothanchery, Izabela Naydenova, Viswanath Bavigadda, Suzanne Martin, Vincent Toal

Conference Papers

Polymerisation induced shrinkage is one of the main reasons why photopolymer materials are not more widely used for holographic applications. The aim of this study is to evaluate the shrinkage in an acrylamide photopolymer layer during holographic recording using holographic interferometry. Shrinkage in photopolymer layers can be measured by real time capture of holographic interferograms during holographic recording. Interferograms were captured using a CMOS camera at regular intervals. The optical path length change and hence the shrinkage were determined from the captured fringe patterns. It was observed that the photopolymer layer shrinkage is in the order of 3.5%.


Digital Holographic Measurement Of Nanometric Optical Excitation On Soft Matter By Optical Pressure And Photothermal Interactions, David C. Clark Jan 2012

Digital Holographic Measurement Of Nanometric Optical Excitation On Soft Matter By Optical Pressure And Photothermal Interactions, David C. Clark

USF Tampa Graduate Theses and Dissertations

In this dissertation we use digital holographic quantitative phase microscopy to observe and measure phase-only structures due to induced photothermal interactions and nanoscopic structures produced by photomechanical interactions. Our use of the angular spectrum method combined with off-axis digital holography allows for the successful hologram acquisition and processing necessary to view these phenomena with nanometric and, in many cases, subnanometric precision. We show through applications that this has significance in metrology of bulk fluid and interfacial properties.

Our accurate quantitative phase mapping of the optically induced thermal lens in media leads to improved measurement of the absorption coefficient over existing …