Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Optics

2012

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 115

Full-Text Articles in Physics

Petawatt-Laser-Driven Wakefield Acceleration Of Electrons To 2 Gev In 10^{17} Cm^{-3} Plasma, Xiaoming Wang, Rafal B. Zgadzaj, Neil Fazel, Sunghwan A. Yi, X. Zhang, Watson Henderson, Yen-Yu Zhang, Rick Korzekwa, Hai-En Tsai, C.-H. Pai, Zhengyan Li, Hernan Quevedo, Gilliss Dyer, Erhard W. Gaul, Mikael Martinez, Aaron Bernstein, Ted Borger, M. Spinks, M. Donovan, Serguei Y. Kalmykov, Vladimir N. Khudik, Gennady Shvets, Todd Ditmire, Michael C. Downer Dec 2012

Petawatt-Laser-Driven Wakefield Acceleration Of Electrons To 2 Gev In 10^{17} Cm^{-3} Plasma, Xiaoming Wang, Rafal B. Zgadzaj, Neil Fazel, Sunghwan A. Yi, X. Zhang, Watson Henderson, Yen-Yu Zhang, Rick Korzekwa, Hai-En Tsai, C.-H. Pai, Zhengyan Li, Hernan Quevedo, Gilliss Dyer, Erhard W. Gaul, Mikael Martinez, Aaron Bernstein, Ted Borger, M. Spinks, M. Donovan, Serguei Y. Kalmykov, Vladimir N. Khudik, Gennady Shvets, Todd Ditmire, Michael C. Downer

Serge Youri Kalmykov

Electron self-injection into a laser-plasma accelerator (LPA) driven by the Texas Petawatt (TPW) laser is reported at plasma densities 1.7 - 6.2 x 10^{17} cm^{-3}. Energy and charge of the electron beam, ranging from 0.5 GeV to 2 GeV and tens to hundreds of pC, respectively, depended strongly on laser beam quality and plasma density. Angular beam divergence was consistently around 0.5 mrad (FWHM), while shot-to-shot pointing fluctuations were limited to ±1.4 mrad rms. Betatron x-rays with tens of keV photon energy are also clearly observed.


Sub-Millimeter-Scale, 100-Mev-Class Quasi-Monoenergetic Laser Plasma Accelerator Based On All-Optical Control Of Dark Current In The Blowout Regime, Serguei Y. Kalmykov, Xavier Davoine, Bradley A. Shadwick Dec 2012

Sub-Millimeter-Scale, 100-Mev-Class Quasi-Monoenergetic Laser Plasma Accelerator Based On All-Optical Control Of Dark Current In The Blowout Regime, Serguei Y. Kalmykov, Xavier Davoine, Bradley A. Shadwick

Serge Youri Kalmykov

It is demonstrated that by negatively chirping the frequency of a 20-fs, 15-TW driving laser pulse with an ultrabroad bandwidth (corresponding to a sub-2-cycle transform-limited duration it is possible to prevent early compression of the pulse into an optical shock, thus reducing expansion of the accelerating plasma bucket (electron density "bubble") and delaying dephasing of self-injected and accelerated electrons. These features help suppress unwanted continuous self-injection (dark current) in the blowout regime, making possible to use the entire dephasing length to generate low-background, quasi-monoenergetic 200-MeV-scale electron beams from sub-mm-length, dense plasmas (n_{e0} = 1.3 x 10^{19} cm^{−3}).


Multi-Sensor Calibration And Validation Of The Uwo-Pcl Water Vapour Lidar, Robin Wing Dec 2012

Multi-Sensor Calibration And Validation Of The Uwo-Pcl Water Vapour Lidar, Robin Wing

Electronic Thesis and Dissertation Repository

The Purple Crow Lidar (PCL) has recently participated in a water vapour validation cam- paign with the NASA/GSFC Atmospheric Laboratory for Validation/Interagency Collaboration and Education (ALVICE) Lidar. The purpose of this calibration campaign is to insure that PCL water vapour measurements are of sufficient quality for use in scientific investigations of atmo- spheric change, and to be included in the Network for the Detection of Atmospheric Climate Change (NDACC) data base. The detection of long term changes in water vapour concentra- tion, particularly in the upper troposphere and lower stratosphere (UTLS) is an issue of pressing scientific, ecological and societal …


First Temperature Observations With The Usu Very Large Rayleigh Lidar: An Examination Of Mesopause Temperatures, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham, Lance W. Petersen, Matthew T. Emerick Dec 2012

First Temperature Observations With The Usu Very Large Rayleigh Lidar: An Examination Of Mesopause Temperatures, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham, Lance W. Petersen, Matthew T. Emerick

Leda Sox

No abstract provided.


Investigation Of Optical Dipole Traps For Trapping Neutral Atoms For Quantum Computing, Danielle May Dec 2012

Investigation Of Optical Dipole Traps For Trapping Neutral Atoms For Quantum Computing, Danielle May

Physics

No abstract provided.


Logistic Curves, Extraction Costs And Peak Oil, Robert J. Brecha Dec 2012

Logistic Curves, Extraction Costs And Peak Oil, Robert J. Brecha

Physics Faculty Publications

Debates about the possibility of a near-term maximum in world oil production have become increasingly prominent over the past decade, with the focus often being on the quantification of geologically available and technologically recoverable amounts of oil in the ground. Economically, the important parameter is not a physical limit to resources in the ground, but whether market price signals and costs of extraction will indicate the efficiency of extracting conventional or nonconventional resources as opposed to making substitutions over time for other fuels and technologies. We present a hybrid approach to the peak-oil question with two models in which the …


Ultrafast Laser-Induced Damage And The Influence Of Spectral Effects, Jeremy Gulley Nov 2012

Ultrafast Laser-Induced Damage And The Influence Of Spectral Effects, Jeremy Gulley

Jeremy R. Gulley

Numerous studies have investigated the prerequisite role of photoionization in ultrafast laser-induced damage (LID) of bulk dielectrics. This study examines the role of spectral width and instantaneous laser frequency in LID using a frequency dependent multiphoton ionization (MPI) model and numerical simulation of initially 800 nm laser pulses propagating through fused silica. Assuming a band gap of 9 eV, MPI by an 800 nm field is a six-photon process, but when the instantaneous wavelength is greater than 827 nm an additional photon is required for photoionization, reducing the probability of the event by many orders of magnitude. Simulation results suggest …


Spectral Engineering Of Optical Fiber Preforms Through Active Nanoparticle Doping, T. Lindstrom, E. Garber, D. Edmonson, T. Hawkins, Y. Chen, G. Turri, M. Bass, J. Ballato Nov 2012

Spectral Engineering Of Optical Fiber Preforms Through Active Nanoparticle Doping, T. Lindstrom, E. Garber, D. Edmonson, T. Hawkins, Y. Chen, G. Turri, M. Bass, J. Ballato

Publications

Europium doped alkaline earth fluoride [Eu:AEF2 (AE = Ca, Sr, Ba)] nanoparticles were synthesized and systematically incorporated into the core of modified chemical vapor deposition (MCVD)-derived silica-based preforms by solution doping. The resulting preforms were examined to determine the impact of the nanoparticles chemistry on the spectroscopic behavior of the glass. The dominant existence of Eu3+ was demonstrated in all preforms, which is in contrast to conventional solution doped preforms employing dissolved europium salts where Eu2+ is primarily observed. Raman spectroscopy and fluorescence lifetime measurements indicated that the nanoparticles composition is effective in controlling, at a local chemical and structural …


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Srinivas Sridhar

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Donald Heiman

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Latika Menon

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Spectral Cross Correlation As A Supervised Approach For The Analysis Of Complex Raman Datasets: The Case Of Nanoparticles In Biological Cells, Mark Keating, Franck Bonnier, Hugh Byrne Oct 2012

Spectral Cross Correlation As A Supervised Approach For The Analysis Of Complex Raman Datasets: The Case Of Nanoparticles In Biological Cells, Mark Keating, Franck Bonnier, Hugh Byrne

Articles

Spectral Cross-correlation is introduced as a methodology to identify the presence and subcellular distribution of nanoparticles in cells. Raman microscopy is employed to spectroscopically image biological cells previously exposed to polystyrene nanoparticles, as a model for the study of nano-bio interactions. The limitations of previously deployed strategies of K-means clustering analysis and principal component analysis are discussed and a novel methodology of Spectral Cross Correlation Analysis is introduced and compared with the performance of Classical Least Squares Analysis, in both unsupervised and supervised modes. The previous study demonstrated the feasibility of using Raman spectroscopy to map cells and identify polystyrene …


Efficient High-Dimensional Entanglement Imaging With A Compressive-Sensing Double-Pixel Camera, Gregory A. Howland, John C. Howell Oct 2012

Efficient High-Dimensional Entanglement Imaging With A Compressive-Sensing Double-Pixel Camera, Gregory A. Howland, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

We implement a double-pixel compressive-sensing camera to efficiently characterize, at high resolution, the spatially entangled fields that are produced by spontaneous parametric down-conversion. This technique leverages sparsity in spatial correlations between entangled photons to improve acquisition times over raster scanning by a scaling factor up to n2/log(n) for n-dimensional images. We image at resolutions up to 1024 dimensions per detector and demonstrate a channel capacity of 8.4 bits per photon. By comparing the entangled photons’ classical mutual information in conjugate bases, we violate an entropic Einstein-Podolsky-Rosen separability criterion for all measured resolutions. More broadly, our result indicates that …


Development Of A Lightweight, Monolithic, Aspheric Mirror Utlizing Fdm Technology, Josiah Thomas Oct 2012

Development Of A Lightweight, Monolithic, Aspheric Mirror Utlizing Fdm Technology, Josiah Thomas

Von Braun Symposium Student Posters

No abstract provided.


Application Of The Transfer Matrix Method To Reflection Gratings In Positive And Negative Index Materials, Han Li Oct 2012

Application Of The Transfer Matrix Method To Reflection Gratings In Positive And Negative Index Materials, Han Li

Han Li

No abstract provided.


Enhancement Of Vitamin D Metabolites In The Eye Following Vitamin D3 Supplementation And Uv-B Irradiation, Yanping Lin, John L. Ubels, Mark P. Schotanus, Zhaohong Yin Oct 2012

Enhancement Of Vitamin D Metabolites In The Eye Following Vitamin D3 Supplementation And Uv-B Irradiation, Yanping Lin, John L. Ubels, Mark P. Schotanus, Zhaohong Yin

University Faculty Publications and Creative Works

This study was designed to measure vitamin D metabolites in the aqueous and vitreous humor and in tear fluid, and to determine if dietary vitamin D3 supplementation affects these levels. We also determined if the corneal epithelium can synthesize vitamin D following UV-B exposure. Methods: Rabbits were fed a control or vitamin D3 supplemented diet. Pilocarpine- stimulated tear fluid was collected and aqueous and vitreous humor were drawn from enucleated eyes. Plasma vitamin D was also measured. To test for epithelial vitamin D synthesis, a human corneal limbal epithelial cell line was irradiated with two doses of UV-B (10 and …


Light Scattering Study Of Elongated Particles: From Inorganic Nanorice To Polypeptide Micelles, Philip Dee Sep 2012

Light Scattering Study Of Elongated Particles: From Inorganic Nanorice To Polypeptide Micelles, Philip Dee

Undergraduate Research Posters 2012

Utilizing the powerful experimental technique of Dynamic Light Scattering (DLS) for size characterization of anisotropic particles can be extremely misleading. Unfortunately, this point is often not realized by researchers who strive for particle sizing of nanoparticles in suspensions. We present a consistent analysis of DDLS results on FeOOH nanorice and outline the potential difficulties and challenges of DDLS application for polypeptide micelles.


Fast Super-Resolution Using An Adaptive Wiener Filter With Robustness To Local Motion, Russell C. Hardie, Kenneth J. Barnard Sep 2012

Fast Super-Resolution Using An Adaptive Wiener Filter With Robustness To Local Motion, Russell C. Hardie, Kenneth J. Barnard

Electrical and Computer Engineering Faculty Publications

We present a new adaptive Wiener filter (AWF) super-resolution (SR) algorithm that employs a global background motion model but is also robust to limited local motion. The AWF relies on registration to populate a common high resolution (HR) grid with samples from several frames. A weighted sum of local samples is then used to perform nonuniform interpolation and image restoration simultaneously. To achieve accurate subpixel registration, we employ a global background motion model with relatively few parameters that can be estimated accurately. However, local motion may be present that includes moving objects, motion parallax, or other deviations from the background …


Double Lorentzian Atomic Prism, David J. Starling, Steven M. Bloch, Praveen K. Vudyasetu, Joseph S. Choi, Bethany Little, John C. Howell Aug 2012

Double Lorentzian Atomic Prism, David J. Starling, Steven M. Bloch, Praveen K. Vudyasetu, Joseph S. Choi, Bethany Little, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

We present an atomic prism spectrometer that utilizes the steep linear dispersion between two strongly absorbing hyperfine resonances of rubidium. We resolve spectral lines 50 MHz apart and, utilizing a larger part of the available spectrum than only between the two resonances, we spatially separate collinear pump, signal, and idler beams resulting from a four-wave mixing process. Due to the high transparency possible between the resonances, these results have applications in the filtering of narrow-band entangled photons and interaction-free measurements.


Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson Aug 2012

Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson

STAR Program Research Presentations

The Telescope Assembly Alignment Simulator (TAAS) calibrates scientific instruments (SI’s) that are installed on the Stratospheric Observatory For Infrared Astronomy (SOFIA). An SI’s accuracy is directly dependent on the consistent performance of the TAAS, which has never been fully characterized. After designing various thermal and optical experiments to identify the current unknowns of TAAS, we now have a far better grasp on how the equipment behaves.


Optical Cryoimaging Of Celular Redox In Kidneys From Diabetic Mice, Sepideh Maleki Aug 2012

Optical Cryoimaging Of Celular Redox In Kidneys From Diabetic Mice, Sepideh Maleki

Theses and Dissertations

Diabetic Nephropathy (DN) is the major single cause of end stage renal diseases (ESRD) in the United States. Diabetes is the third leading fatal disorder after cancer and heart disease. It is affecting 8.3% of the residents of the United States, with a total healthcare cost of $174 billion/yr by 2010.

There currently exists a need for a sensitive and specific diagnosis for temporal detection of oxidative stress (OS) in cellular metabolic levels, which plays an early role in the development of DN. The objective of this research is to use a fluorescence optical imaging technique in order to delineate …


Spectral Analysis Of Encrypted Chaotic Signals Using Fast Fourier Transforms And Laboratory Spectral Analyzers, Monish Ranjan Chatterjee, Abhinay Kundur Aug 2012

Spectral Analysis Of Encrypted Chaotic Signals Using Fast Fourier Transforms And Laboratory Spectral Analyzers, Monish Ranjan Chatterjee, Abhinay Kundur

Electrical and Computer Engineering Faculty Publications

The use of acousto-optic chaos, as manifested via first-order feedback in an acousto-optic Bragg cell, in encrypting a message wave and subsequently recovering the message in the receiver using a chaotic heterodyne strategy, has been reported recently [1-3]. In examining the dynamical system analytically using computer simulation, (expected) modulated chaos waveforms are obtained within specified observation windows.

Because of the relatively random nature inherent in chaos waveforms, it is essentially impossible to ascertain from the visual display of the chaotic wave whether a given message signal has in fact modulated the chaotic "carrier". In fact, it has been observed from …


Commissioning Of The Asta Laser Lab With Uv Pulse Length Characterization, Daniel Kelley, Jeff Corbett Aug 2012

Commissioning Of The Asta Laser Lab With Uv Pulse Length Characterization, Daniel Kelley, Jeff Corbett

STAR Program Research Presentations

The Linac Coherent Light Source (LCLS) at SLAC depends on a photocathode electron gun to provide the linear accelerator with the raw material – electrons – used for making X-ray laser pulses. The photocathode used in the LCLS Injector is a clean copper plate in high vacuum. When the cathode is struck with high energy UV light, electrons are liberated from its surface and then accelerated down the linac with radio-frequency electric fields. These fast-moving bunches of electrons are directed through an undulator magnet to radiate X-ray light.

Although scientists have been using photocathode techniques at SLAC for 25 years, …


Leds And Astronomy, Britny N. Delp, Stephen M. Pompea Aug 2012

Leds And Astronomy, Britny N. Delp, Stephen M. Pompea

STAR Program Research Presentations

Using a Czerny-Turner spectrometer, 45 different types of outdoor lights were categorized. These spectra were used to determine how useful the light is to human eyes and how dark skies friendly these lights are. Dark skies friendly lighting means that little to no light shines above a right angle to the light, and should emit as little as possible below 500nm (green) wavelengths. The short wavelengths present a problem to astronomers in the form of Rayleigh scattering. The following criterion were used in selecting the best source for urban and rural lighting: color rendition measured by color rendering index (CRI), …


Morphology-Properties Studies In Laser Synthesized Nanostructured Materials, Nozomi Shirato Aug 2012

Morphology-Properties Studies In Laser Synthesized Nanostructured Materials, Nozomi Shirato

Doctoral Dissertations

Synthesis of well-defined nanostructures by pulsed laser melting is an interesting subject from both a funda- mental and technological point of view. In this thesis, the synthesis and functional properties of potentially useful materials were studied, such as tin dioxide nanostructured arrays, which have potential applications in hydrogen gas sensing, and ferromagnetic Co nanowire and nanomagnets, which are fundamentally im- portant towards understanding magnetism in the nanoscale. First, the formation of 1D periodic tin dioxide nanoarrays was investigated with the goal of forming nanowires for hydrogen sensing. Experimental obser- vations combined with theoretical modeling successfully explained the mechanisms of structure …


Phase Control In Atomic Coherence, Utsab Khadka Aug 2012

Phase Control In Atomic Coherence, Utsab Khadka

Graduate Theses and Dissertations

In this thesis, atomic coherence is used to enhance nonlinear optical processes in multi-level atoms. The multi-photon transitions are driven resonantly, and at the same time without absorptive losses, by using electromagnetically induced transparency (EIT), thereby allowing the study of χ(3) and χ(5) nonlinearities using weak driving fields. The coherently modified probe beam(s) and the atom-radiated signal fields arising from four- and six- wave- mixing (FWM and SWM) processes are measured in the spectral, temporal and spatial domains.

In a three-level ladder-type atomic system, multiple peaks having spectral asymmetries are observed in the EIT window as well as …


Polarization Properties Of Maxwell-Gauss Laser Beams, Jessica Patricia Conry Aug 2012

Polarization Properties Of Maxwell-Gauss Laser Beams, Jessica Patricia Conry

Graduate Theses and Dissertations

Laser beams are wave-like optical disturbances. They are characterized by a dominant direction of propagation and a finite extent transverse to the direction of propagation. Many characteristics of laser beams can be described in terms of a scalar function multiplied by a constant vector, which can be real (for linear polarization) or complex (for elliptical polarization). The scalar function is a solution to the paraxial scalar wave equation. This scalar description, however, fails to describe the polarization and focusing characteristics of laser beams correctly. For a correct accounting of these characteristics, the electric and magnetic fields associated with laser beams …


Capacitively Coupled Radio-Frequency Discharges In Nitrogen At Low Pressures, L. L Alves, L. Marques, C. D Pintassilgo, W. Wattieaux, Et. Es-Sebbar, J. Berndt, E. Kovačević, N. Carrasco, L. Boufendi, G. Cernogora Jul 2012

Capacitively Coupled Radio-Frequency Discharges In Nitrogen At Low Pressures, L. L Alves, L. Marques, C. D Pintassilgo, W. Wattieaux, Et. Es-Sebbar, J. Berndt, E. Kovačević, N. Carrasco, L. Boufendi, G. Cernogora

Dr. Et-touhami Es-sebbar

This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56 MHz frequency, 0.1–1 mbar pressures and 2–30 W coupled powers. Experiments performed on two similar (not twin) setups, existing in the LATMOS and the GREMI laboratories, include electrical and optical emission spectroscopy (OES) measurements. Electrical measurements give the rf-applied and the direct-current-self-bias voltages, the effective power coupled to the plasma and the average electron density. OES diagnostics measure the intensities of radiative transitions with the nitrogen second-positive and first-negative systems, and with the 811.5 nm atomic line of argon (present as an …


Application Of Chebyshev Formalism To Identify Nonlinear Magnetic Field Components In Beam Transport System, Michael Spata Jul 2012

Application Of Chebyshev Formalism To Identify Nonlinear Magnetic Field Components In Beam Transport System, Michael Spata

Physics Theses & Dissertations

An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the …


Upgraded Alo Rayleigh Lidar System And Its Improved Gravity Wave Measurements, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham Jun 2012

Upgraded Alo Rayleigh Lidar System And Its Improved Gravity Wave Measurements, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham

Leda Sox

The Rayleigh-Scatter lidar system at the Atmospheric Lidar Observatory (ALO) on the Utah State campus is currently going through a series of upgrades to significantly improve its observational abilities. A specific objective of these upgrades is to expand the altitude range over which backscattered photons can be collected. A second objective is to increase the sensitivity of the instrument to be able to analyze the raw data at finer temporal and/or spatial resolutions. By measuring relative densities, the system will be able to produce absolute temperatures and relative density perturbations, which illustrate gravity wave structures. Gravity wave studies will significantly …