Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

A Computationally-Efficient Bound For The Variance Of Measuring The Orientation Of Single Molecules, Tingting Wu, Tianben Ding, Hesam Mazidi, Oumeng Zhang, Matthew D. Lew Feb 2020

A Computationally-Efficient Bound For The Variance Of Measuring The Orientation Of Single Molecules, Tingting Wu, Tianben Ding, Hesam Mazidi, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Modulating the polarization of excitation light, resolving the polarization of emitted fluorescence, and point spread function (PSF) engineering have been widely leveraged for measuring the orientation of single molecules. Typically, the performance of these techniques is optimized and quantified using the Cramér-Rao bound (CRB), which describes the best possible measurement variance of an unbiased estimator. However, CRB is a local measure and requires exhaustive sampling across the measurement space to fully characterize measurement precision. We develop a global variance upper bound (VUB) for fast quantification and comparison of orientation measurement techniques. Our VUB tightly bounds the diagonal elements of the …


Short Terahertz Pulses From Semiconductor Surfaces: The Importance Of Bulk Difference‐Frequency Mixing, Peter N. Saeta, Benjamin I. Greene, Shun Lien Chuang Dec 1993

Short Terahertz Pulses From Semiconductor Surfaces: The Importance Of Bulk Difference‐Frequency Mixing, Peter N. Saeta, Benjamin I. Greene, Shun Lien Chuang

All HMC Faculty Publications and Research

The crystallographic orientation dependence of the far‐infrared (FIR) light generated at the (001) surface of a zincblende semiconductor is shown to derive principally from bulk difference‐frequency mixing. A strong modulation is observed for 1‐GW/cm2 pulses on InP, which demonstrates that the radiated FIR wave produced by bulk optical rectification is comparable to that generated by the transport of photoinjected carriers. Using the bulk rectification light as a clock, we show that more than 95% of the light produced from an InP (111) crystal by 100‐fs, 100‐μJ pulses is generated in a time shorter than the excitation pulse.