Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Noncontact Liquid Crystalline Broadband Optoacoustic Sensors, Hengky Chandrahalim, Michael T. Dela Cruz Jun 2022

Noncontact Liquid Crystalline Broadband Optoacoustic Sensors, Hengky Chandrahalim, Michael T. Dela Cruz

AFIT Patents

An optoacoustic sensor includes a liquid crystal (LC) cell formed between top and bottom plates of transparent material. A transverse grating formed across the LC cell that forms an optical transmission bandgap. A CL is aligned to form a spring-like, tunable Bragg grating that is naturally responsive to external agitations providing a spectral transition regime, or edge, in the optical transmission bandgap of the transverse grating that respond to broadband acoustic waves. The optoacoustic sensor includes a narrowband light source that is oriented to transmit light through the top plate, the LC cell, and the bottom plate. The optoacoustic sensor …


Study Of The Effects Of Cavity Mode Spacing On Mode-Hopping In Iii–V/Si Hybrid Photonic Crystal Lasers, Praveen K.J. Singaravelu, Sharon M. Butler, Robert N. Sheehan, Alexandros A. Liles, Stephen P. Hegarty, Liam O'Faolain Jul 2021

Study Of The Effects Of Cavity Mode Spacing On Mode-Hopping In Iii–V/Si Hybrid Photonic Crystal Lasers, Praveen K.J. Singaravelu, Sharon M. Butler, Robert N. Sheehan, Alexandros A. Liles, Stephen P. Hegarty, Liam O'Faolain

Cappa Publications

We present a design methodology for hybrid lasers to realise mode-hop free operation by controlling the cavity mode spacing. In this study, a compact hybrid photonic crystal laser (H-PhCL) was employed which allowed a reduction of the Fabry–Perot length of the laser cavity and eliminated the need for an active mode stabilisation mechanism in order to realise mode-hop free operation. The H-PhCL was formed by butt-coupling a reflective semiconductor optical amplifier (RSOA) with a two-dimensional silicon (Si) photonic crystal (PhC) cavity. Continuous stable single frequency operation with >40 dB side-mode suppression ratio (SMSR) of the laser was achieved for gain …


Characterizing Complexity In A Semiconductor With Optical Feedback From Two Mirrors, Layla M. Abrams Jan 2020

Characterizing Complexity In A Semiconductor With Optical Feedback From Two Mirrors, Layla M. Abrams

2020 Symposium Posters

Lasers are stable devices with a broad spectrum of applications. They can be perturbed to induce complex dynamics in their output intensity. One interesting regime in semiconductor lasers is that the output intensity of the laser emits a sequence of non-regular optical spikes. This behavior resembles that of neurons. We use a semiconductor laser with optical feedback from two mirrors to characterize the behavior of the laser's power output. The data is then analyzed by transforming the intensity time series into a sequence of patterns or words. By doing this we want to explore how the laser changes its preferred …


Spectroscopy Of Neon For The Advanced Undergraduate Laboratory, H. C. Busch, M. B. Cooper, C. I. Sukenik Jan 2019

Spectroscopy Of Neon For The Advanced Undergraduate Laboratory, H. C. Busch, M. B. Cooper, C. I. Sukenik

Physics Faculty Publications

We describe a spectroscopy experiment, suitable for upper-division laboratory courses, that investigates saturated absorption spectroscopy and polarization spectroscopy in a neon discharge. Both experiments use nearly identical components, allowing students to explore both techniques in a single apparatus. Furthermore, because the wavelength of the laser is in the visible part of the spectrum (640 nm), the experiment is well-suited for students with limited experience in optical alignment. The labs nicely complement a course in atomic or plasma physics, provide students with the opportunity to gain important technical skills in the area of optics and lasers, and can provide an introduction …


Thermally Stable Hybrid Cavity Laser Based On Silicon Nitride Gratings, Simone Iadanza, Andrei P. Bakoz, Praveen K. J. Singaravelu, Danilo Panettieri, Stefan Schulz, Ganga Chinna Rao Devarapu, Sylvain Guerber, Charles Baudot, Frédéric Boeuf, Stephen Hegarty, Liam O'Faolain Jul 2018

Thermally Stable Hybrid Cavity Laser Based On Silicon Nitride Gratings, Simone Iadanza, Andrei P. Bakoz, Praveen K. J. Singaravelu, Danilo Panettieri, Stefan Schulz, Ganga Chinna Rao Devarapu, Sylvain Guerber, Charles Baudot, Frédéric Boeuf, Stephen Hegarty, Liam O'Faolain

Cappa Publications

In this paper, we show the experimental results of a thermally stable Si3N4 external cavity (SiN EC) laser with high power output and the lowest SiN EC laser threshold to our knowledge. The device consists of a 250 μm sized reflective semiconductor optical amplifier butt-coupled to a passive chip based on a series of Si3N4 Bragg gratings acting as narrow reflectors. A threshold of 12 mA has been achieved, with a typical side-mode suppression ratio of 45 dB and measured power output higher than 3 mW. Furthermore, we achieved a mode-hop free-lasing regime in the range of 15–62 mA and …


Generation Of Mid-Ir Wavelengths, Deborah Robinson, Robert Hartsock, Kelly Gaffney Jan 2011

Generation Of Mid-Ir Wavelengths, Deborah Robinson, Robert Hartsock, Kelly Gaffney

STAR Program Research Presentations

Generation of mid-IR wavelengths

Deborah Robinson, Robert Hartsock, and Kelly Gaffney

Abstract

Research to determine basic molecular properties utilizing pump/probe experiments is an on going effort at SLAC. Here we have been given the task to generate mid-IR laser pulses and commission a mid-IR detector for said experiments and research. The mid-IR pulses will be used to probe the changes in molecular properties induced by exciting the electrons in molecules with visible pump pulses. In order to accomplish this, an optical parametric amplifier (OPA) has been set-up and aligned. The pump beam for the OPA is a 40 femtosecond 800nm …


Coupled Photonic Crystal Micro-Cavities With Ultra-Low Threshold Power For Stiumulated Raman Scattering, Qiang Liu, Zhengbiao Ouyang, Sacharia Albin Jan 2011

Coupled Photonic Crystal Micro-Cavities With Ultra-Low Threshold Power For Stiumulated Raman Scattering, Qiang Liu, Zhengbiao Ouyang, Sacharia Albin

Electrical & Computer Engineering Faculty Publications

We propose coupled cavities to realize a strong enhancement of the Raman scattering. Five sub cavities are embedded in the photonic crystals. Simulations through finite-difference time-domain (FDTD) method demonstrate that one cavity, which is used to propagate the pump beam at the optical-communication wavelength, has a Q factor as high as 1.254 × 108 and modal volume as small as 0.03μm3 (0.3192(λ/n)3). These parameters result in ultra-small threshold lasing power ~17.7nW and 2.58nW for Stokes and anti-Stokes respectively. The cavities are designed to support the required Stokes and anti-Stokes modal spacing in silicon. The proposed structure …


Elliptical Micro-Ring Organic Lasers, P. R. Korade, John Ballato, R, V. Gregory Jan 2007

Elliptical Micro-Ring Organic Lasers, P. R. Korade, John Ballato, R, V. Gregory

Chemistry & Biochemistry Faculty Publications

Multimode laser action was observed from optically excited 2,5-dioctyloxy poly(para-phenylene-vinylene), DOO-PPV, micro-rings coaxially deposited around glass optical fibres of elliptical cross-section. The laser emission was found to be dependent upon the incident angle of the excitation and exhibited linewidths of approximately 1.2 Å, quality factors (Q) exceeding 5000, and thresholds below 0.3 μJ pulse. Such elliptical organic micro-ring lasers offer increased tailorability in emission properties over more conventional analogues of circular cross-section. Also discussed is the potential for such low-threshold lasers to serve as integrated sources for fibre lasers and amplifiers.