Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Optics

Graduate Theses and Dissertations

2014

Articles 1 - 2 of 2

Full-Text Articles in Physics

Characterizing Nanoparticle Size By Dynamic Light Scattering Technique (Dls), Marzia Zaman Aug 2014

Characterizing Nanoparticle Size By Dynamic Light Scattering Technique (Dls), Marzia Zaman

Graduate Theses and Dissertations

The Dynamic Light Scattering Technique was used to determine the size, shape and diffusion coefficient of nanoparticle. The intensity auto correlation functions of light scattered by particles in a solution were measured by using a photomultiplier tube and analyzed to get the relaxation rates for decay of intensity correlations, which correspond to the diffusion constants pertaining to the motion of the particle. In the case of nanorods there are two types of motion - translational and rotational. By dis-entangling the relaxation rates, corresponding to these two types of motion, the shape and size of nanoparticle could be characterized. These experiments, …


Atomic-Scale Characterization And Manipulation Of Freestanding Graphene Using Adapted Capabilities Of A Scanning Tunneling Microscope, Steven Barber May 2014

Atomic-Scale Characterization And Manipulation Of Freestanding Graphene Using Adapted Capabilities Of A Scanning Tunneling Microscope, Steven Barber

Graduate Theses and Dissertations

Graphene was the first two-dimensional material ever discovered, and it exhibits many unusual phenomena important to both pure and applied physics. To ensure the purest electronic structure, or to study graphene's elastic properties, it is often suspended over holes or trenches in a substrate. The aim of the research presented in this dissertation was to develop methods for characterizing and manipulating freestanding graphene on the atomic scale using a scanning tunneling microscope (STM). Conventional microscopy and spectroscopy techniques must be carefully reconsidered to account for movement of the extremely flexible sample.

First, the acquisition of atomic-scale images of freestanding graphene …