Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Non-linear Dynamics

PDF

Selected Works

Keyword
Publication Year
Publication

Articles 31 - 51 of 51

Full-Text Articles in Physics

All-Optical Suppression Of Relativistic Self-Focusing Of Laser Beams In Plasmas, Serguei Y. Kalmykov, Sunghwan A. Yi, Gennady Shvets Oct 2008

All-Optical Suppression Of Relativistic Self-Focusing Of Laser Beams In Plasmas, Serguei Y. Kalmykov, Sunghwan A. Yi, Gennady Shvets

Serge Youri Kalmykov

It is demonstrated that a catastrophic relativistic self-focusing (RSF) of a high-power laser pulse can be prevented all-optically by a second, much weaker, copropagating pulse. RSF suppression occurs when the difference frequency of the pulses slightly exceeds the electron plasma frequency. The mutual defocusing is caused by the three-dimensional electron density perturbation driven by the laser beat wave slightly above the plasma resonance. A bi-envelope model describing the early stage of the mutual defocusing is derived and analyzed. Later stages, characterized by the presence of a strong electromagnetic cascade, are investigated numerically. Stable propagation of the laser pulse with weakly …


Studies Of Laser Wakefield Structures And Electron Acceleration In Underdense Plasmas, Anatoly Maksimchuk, Steven A. Reed, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Takeshi Matsuoka, Christopher Mcguffey, Gerard Mourou, Natalia Naumova, John Nees, Pascal Rousseau, Victor Yanovsky, Karl Krushelnick, Nicholas H. Matlis, Serguei Y. Kalmykov, Gennady Shvets, Michael C. Downer, C. R. Vane, J. R. Beene, Daniel W. Stracener, David R. Schultz Apr 2008

Studies Of Laser Wakefield Structures And Electron Acceleration In Underdense Plasmas, Anatoly Maksimchuk, Steven A. Reed, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Takeshi Matsuoka, Christopher Mcguffey, Gerard Mourou, Natalia Naumova, John Nees, Pascal Rousseau, Victor Yanovsky, Karl Krushelnick, Nicholas H. Matlis, Serguei Y. Kalmykov, Gennady Shvets, Michael C. Downer, C. R. Vane, J. R. Beene, Daniel W. Stracener, David R. Schultz

Serge Youri Kalmykov

Experiments on electron acceleration and optical diagnostics of laser wakes were performed on the HERCULES facility in a wide range of laser and plasma parameters. Using frequency domain holography we demonstrated single shot visualization of individual plasma waves, produced by 40 TW, 30 fs laser pulses focused to the intensity of 10^{19} W/cm^2 onto a supersonic He gas jet with plasma densities n_e ~ 10^{19} cm^{−3}. These holographic “snapshots” capture the variation in shape of the plasma wave with distance behind the driver, and resolve wave front curvature seen previously only in simulations. High-energy quasimonoenergetic electron beams were generated using …


Guiding Of Laser Beams In Plasmas By Radiation Cascade Compression, Serguei Y. Kalmykov, Gennady Shvets Nov 2006

Guiding Of Laser Beams In Plasmas By Radiation Cascade Compression, Serguei Y. Kalmykov, Gennady Shvets

Serge Youri Kalmykov

The near-resonant beatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few-fs electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the beat frequency. Consequently, the cascade of sidebands red- and blue-shifted from the fundamental by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion [S. Kalmykov and G. Shvets, Phys. Rev. E 73, 46403 (2006)]. In the …


Injection, Trapping, And Acceleration Of Electrons In A Three-Dimensional Nonlinear Laser Wakefield, Serguei Y. Kalmykov, Leonid M. Gorbunov, Patrick Mora, Gennady Shvets Oct 2006

Injection, Trapping, And Acceleration Of Electrons In A Three-Dimensional Nonlinear Laser Wakefield, Serguei Y. Kalmykov, Leonid M. Gorbunov, Patrick Mora, Gennady Shvets

Serge Youri Kalmykov

It is demonstrated that the accelerating and focusing phases of the nonlinear three-dimensional axisymmetric laser wake can almost entirely overlap starting from a certain distance behind the laser pulse in homogeneous plasma. Such field structure results from the curvature of phase fronts due to the radially inhomogeneous relativistic shift of plasma frequency. Consequently, the number of trapped low-energy electrons can be much greater than that predicted by the linear wake theory. This effect is favorable for quasi-monoenergetic acceleration of a considerable charge (several hundreds of pC) to about 1 GeV per electron in the plasma wakefield driven by an ultrashort …


Snapshots Of Laser Wakefields, Nicholas H. Matlis, Steven A. Reed, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Takeshi Matsuoka, Pascal Rousseau, Victor Yanovsky, Anatoly Maksimchuk, Serguei Y. Kalmykov, Gennady Shvets, Michael C. Downer Oct 2006

Snapshots Of Laser Wakefields, Nicholas H. Matlis, Steven A. Reed, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Takeshi Matsuoka, Pascal Rousseau, Victor Yanovsky, Anatoly Maksimchuk, Serguei Y. Kalmykov, Gennady Shvets, Michael C. Downer

Serge Youri Kalmykov

Tabletop plasma accelerators can now produce GeV-range electron beams and femtosecond X-ray pulses, providing compact radiation sources for medicine, nuclear engineering, materials science and high-energy physics. In these accelerators, electrons surf on electric fields exceeding 100 GeV m^{−1}, which is more than 1,000 times stronger than achievable in conventional accelerators. These fields are generated within plasma structures (such as Langmuir waves or electron density ‘bubbles’) propagating near light speed behind laser or charged-particle driving pulses. Here, we demonstrate single-shot visualization of laser-wakefield accelerator structures for the first time. Our ‘snapshots’ capture the evolution of multiple wake periods, detect structure variations …


Compression Of Laser Radiation In Plasmas Via Electromagnetic Cascading, Serguei Y. Kalmykov, Gennady Shvets Apr 2006

Compression Of Laser Radiation In Plasmas Via Electromagnetic Cascading, Serguei Y. Kalmykov, Gennady Shvets

Serge Youri Kalmykov

A train of few-laser-cycle relativistically intense radiation spikes with a terahertz repetition rate can be organized self-consistently in plasma from two frequency detuned co-propagating laser beams of low intensity. Large frequency bandwidth for the compression of spikes is produced via laser-induced periodic modulation of the plasma refractive index. The beat-wave-driven electron plasma wave downshifted from the plasma frequency creates a moving index grating thus inducing a periodic phase modulation of the driving laser (in spectral terms, electromagnetic cascading). The group velocity dispersion compresses the chirped laser beat notes to a few-cycle duration and relativistic intensity either concurrently in the same, …


Nonlinear Evolution Of The Plasma Beat Wave: Compressing The Laser Beat Notes Via Electromagnetic Cascading, Serguei Y. Kalmykov, Gennady Shvets Mar 2006

Nonlinear Evolution Of The Plasma Beat Wave: Compressing The Laser Beat Notes Via Electromagnetic Cascading, Serguei Y. Kalmykov, Gennady Shvets

Serge Youri Kalmykov

The near-resonant beat wave excitation of an electron plasma wave (EPW) can be employed for generating the trains of few-femtosecond electromagnetic (EM) pulses in rarefied plasmas. The EPW produces a comoving index grating that induces a laser phase modulation at the difference frequency. As a result, the cascade of sidebands red and blue shifted by integer multiples of the beat frequency is generated in the laser spectrum. The bandwidth of the phase-modulated laser is proportional to the product of the plasma length, laser wavelength, and amplitude of the electron density perturbation. When the beat frequency is lower than the electron …


Compression Of Laser Radiation In Plasmas Using Electromagnetic Cascading, Serguei Y. Kalmykov, Gennady Shvets Jun 2005

Compression Of Laser Radiation In Plasmas Using Electromagnetic Cascading, Serguei Y. Kalmykov, Gennady Shvets

Serge Youri Kalmykov

Compressing high-power laser beams in plasmas via generation of a coherent cascade of electromagnetic sidebands is described. The technique requires two copropagating beams detuned by a near-resonant frequency, \Omega < \omega_{p}. The ponderomotive force of the laser beat wave drives an electron plasma wave which modifies the refractive index of plasma so as to produce a periodic phase modulation of the laser field with the beat period t_b = 2\pi/\Omega. A train of chirped laser beat notes (each of duration t_b) is thus created. The group velocity dispersion of radiation in plasma can then compress each beat note to a few-laser-cycle duration. As a result, a train of sharp electromagnetic spikes separated in time by t_b is formed. Depending on the plasma and laser parameters, chirping and compression can be implemented either concurrently in the same plasma or sequentially in different plasmas.


Strongly Coupled Large-Angle Stimulated Raman Scattering Of Short Laser Pulse In Plasma-Filled Capillary, Serguei Y. Kalmykov, Patrick Mora Apr 2005

Strongly Coupled Large-Angle Stimulated Raman Scattering Of Short Laser Pulse In Plasma-Filled Capillary, Serguei Y. Kalmykov, Patrick Mora

Serge Youri Kalmykov

Strongly coupled large-angle stimulated Raman scattering sLA SRSd of a short intense laser pulse develops in a plane plasma-filled capillary differently than in a plasma with open boundaries. Coupling the laser pulse to a capillary seeds the LA SRS in the forward direction (scattering angle smaller than \pi / 2 ) and can thus produce a high instability level in the vicinity of the entrance plane. In addition, oblique mirror reflections off capillary walls partly suppress the lateral convection of scattered radiation and increase the growth rate of the SRS under arbitrary (not too small) angle. Hence, the saturated convective …


Laser Wakefield Acceleration By Petawatt Ultrashort Laser Pulses, Leonid M. Gorbunov, Serguei Y. Kalmykov, Patrick Mora Feb 2005

Laser Wakefield Acceleration By Petawatt Ultrashort Laser Pulses, Leonid M. Gorbunov, Serguei Y. Kalmykov, Patrick Mora

Serge Youri Kalmykov

An ultrashort (about 30 fs) petawatt laser pulse focused with a wide focal spot (about 100 mm) in a rarefied plasma (n_0 ~ 10^{17} cm^{−3}) excites a nonlinear plasma wakefield which can accelerate injected electrons up to GeV energies without any pulse channeling. Under these conditions, propagation of the laser pulse with an overcritical power for relativistic self-focusing is almost the same as in vacuum. The nonlinear quasiplane plasma wave, whose amplitude and phase velocity vary along the laser path, effectively traps and accelerates injected electrons with a wide range of initial energies. Electrons accelerated over two Rayleigh lengths (about …


Application Of Detuned Laser Beatwave For Generation Of Few-Cycle Electromagnetic Pulses, Serguei Y. Kalmykov, Gennady Shvets Nov 2004

Application Of Detuned Laser Beatwave For Generation Of Few-Cycle Electromagnetic Pulses, Serguei Y. Kalmykov, Gennady Shvets

Serge Youri Kalmykov

An approach to compressing high-power laser beams in plasmas via coherent Raman sideband generation is described. The technique requires two beams: a pump and a probe detuned by a near-resonant frequency \Omega < \omega_p. The two laser beams drive a high-amplitude electron plasma wave (EPW) which modifies the refractive index of plasma so as to produce a periodic phase modulation of the incident laser with the laser beat period t_b = 2\pi / \Omega. After propagation through plasma, the original laser beam breaks into a train of chirped beatnotes (each of duration t_b). The chirp is positive (the longer-wavelength sidebands are advanced in time) when \Omega < \omega_p and negative otherwise. Finite group velocity dispersion (GVD) of radiation in plasma can compress the positively chirped beatnotes to a few-laser-cycle duration thus creating in plasma a sequence of sharp electromagnetic spikes separated in time by t_b. Driven EPW strongly couples the laser sidebands and thus reduces the effect of GVD. Compression of the chirped beatnotes can be implemented in a separate plasma of higher density, where the laser sidebands become uncoupled.


Stimulated Raman Backscattering Of Laser Radiation In Deep Plasma Channels, Serguei Y. Kalmykov, Gennady Shvets Sep 2004

Stimulated Raman Backscattering Of Laser Radiation In Deep Plasma Channels, Serguei Y. Kalmykov, Gennady Shvets

Serge Youri Kalmykov

Stimulated Raman backscattering (RBS) of intense laser radiation confined by a single-mode plasma channel with a radial variation of plasma frequency greater than a homogeneous-plasma RBS bandwidth is characterized by a strong transverse localization of resonantly driven electron plasma waves (EPW). The EPW localization reduces the peak growth rate of RBS and increases the amplification bandwidth. The continuum of nonbound modes of backscattered radiation shrinks the transverse field profile in a channel and increases the RBS growth rate. Solution of the initial-value problem shows that an electromagnetic pulse amplified by the RBS in the single-mode deep plasma channel has a …


Analysis And Classification Of Nonlinear Dispersive Evolution Equations In The Potential Representation, Andrei Ludu Dec 2001

Analysis And Classification Of Nonlinear Dispersive Evolution Equations In The Potential Representation, Andrei Ludu

Andrei Ludu

No abstract provided.


On The Effect Of Electron Plasma Waves With Relativistic Phase Velocity On Large-Angle Stimulated Raman Scattering Of Modulated Short Laser Pulse In Plasmas, Nikolai E. Andreev, Serguei Y. Kalmykov May 2001

On The Effect Of Electron Plasma Waves With Relativistic Phase Velocity On Large-Angle Stimulated Raman Scattering Of Modulated Short Laser Pulse In Plasmas, Nikolai E. Andreev, Serguei Y. Kalmykov

Serge Youri Kalmykov

Suppression of a large-angle stimulated Raman scattering (LA-SRS) of a short modulated (two-frequency) laser pulse in a transparent plasma in the presence of a linear long-wavelength electron plasma wave (LW EPW) having relativistic phase velocity is considered under the conditions of weak and strong coupling. The laser spectrum includes two components with a frequency shift equal to the frequency of the LW EPW. The mutual influence of different spectral components of a laser on the SRS under a given angle in the presence of the LW EPW is examined.


On The Effect Of Long-Wavelength Electron Plasma Waves On Large-Angle Stimulated Raman Scattering Of Short Laser Pulse In Plasmas, Nikolai E. Andreev, Serguei Y. Kalmykov Jul 2000

On The Effect Of Long-Wavelength Electron Plasma Waves On Large-Angle Stimulated Raman Scattering Of Short Laser Pulse In Plasmas, Nikolai E. Andreev, Serguei Y. Kalmykov

Serge Youri Kalmykov

Spectral features of a large-angle stimulated Raman scattering (LA SRS) of a short electromagnetic pulse in an underdense plasma, which are caused by the presence in a plasma of a given linear long-wavelength electron plasma wave (LW EPW), are investigated. It is shown that the LW EPW, whose phase velocity coincides with a group velocity of a pulse and a density perturbation normalized to a background electron density, \delta n_{LW} / n_0, exceeds the ratio of the electron plasma frequency to the laser frequency, \omega_{pe} / \omega_0, suppresses the well-known Stokes branch of the weakly coupled LA SRS. Under the …


Spectral Features Of The Stimulated Raman Backscattering Of Modulated Laser Pulses In A Plasma, Nikolai E. Andreev, Serguei Y. Kalmykov Sep 1998

Spectral Features Of The Stimulated Raman Backscattering Of Modulated Laser Pulses In A Plasma, Nikolai E. Andreev, Serguei Y. Kalmykov

Serge Youri Kalmykov

The characteristic features of the stimulated Raman backscattering of short modulated (multi-frequency) laser pulses in an underdense plasma are investigated. A laser pulse consisting of a given pair of spectral components with the frequency difference close to the double plasma frequency is studied in the weak mode coupling approximation. The scattering of the component with the higher frequency is shown to be a five-wave resonant process, and the conditions under which this process is totally suppressed are found. The scattering of the component with the lower frequency is an ordinary three-wave decay process without any suppression. When the difference between …


Backward Stimulated Raman Scattering Of A Modulated Laser Pulse In Plasmas, Nikolai E. Andreev, Serguei Y. Kalmykov Mar 1997

Backward Stimulated Raman Scattering Of A Modulated Laser Pulse In Plasmas, Nikolai E. Andreev, Serguei Y. Kalmykov

Serge Youri Kalmykov

The specific features of backward stimulated Raman scattering (BSRS) of a short modulated (multi-frequency) laser pulse in underdense plasmas are studied. The effect of resonant suppression of the BSRS of higher frequency pulse components is explored. For an arbitrary pair of pulse components, in the conditions of weak coupling, it is demonstrated that the backscattering of a higher frequency laser pulse component is a five-wave resonant process at a frequency difference between the components close to the double plasma frequency. In the conditions of strong coupling the backscattering of neither pulse component is suppressed and the spectrum of the instability …


Nonlinear Liquid Drop Model. Cnoidal Waves, Andrei Ludu Dec 1996

Nonlinear Liquid Drop Model. Cnoidal Waves, Andrei Ludu

Andrei Ludu

No abstract provided.


Generalization Kdv Equation For Fluid Dynamics And Quantum Algebras, Andrei Ludu Dec 1995

Generalization Kdv Equation For Fluid Dynamics And Quantum Algebras, Andrei Ludu

Andrei Ludu

No abstract provided.


Sliding Mode Control Of The Systems With Uncertain Direction Of Control Vector, Sergey V. Drakunov Dec 1992

Sliding Mode Control Of The Systems With Uncertain Direction Of Control Vector, Sergey V. Drakunov

Sergey V. Drakunov

No abstract provided.


Sliding-Mode Observers Based On Equivalent Control Method, Sergey V. Drakunov Dec 1991

Sliding-Mode Observers Based On Equivalent Control Method, Sergey V. Drakunov

Sergey V. Drakunov

No abstract provided.