Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

Impact Of Flattening Filter-Free Field On Online Adaptive Radiotherapy Using Virtual Couch Shift (Vcs) Technique, Q Liu, J Liang, D Yan Jun 2021

Impact Of Flattening Filter-Free Field On Online Adaptive Radiotherapy Using Virtual Couch Shift (Vcs) Technique, Q Liu, J Liang, D Yan

Conference Presentation Abstracts

No abstract provided.


Therapy And Medical Imaging Applications Of Focusing Polycapillary X-Ray Optics, Weiyuan Sun Jan 2021

Therapy And Medical Imaging Applications Of Focusing Polycapillary X-Ray Optics, Weiyuan Sun

Legacy Theses & Dissertations (2009 - 2024)

Focusing polycapillary optics yield high gains in intensity and increased spatial resolution for a variety of clinical, lab-based, synchrotron, or in situ analysis applications. In this dissertation we investigate the extension of two applications of focusing polycapillary optics. The first is the application of polycapillary optics in radiation therapy. This discussion includes measurements and calculation of dose for focused beam orthovoltage therapy. A system has been designed to investigate whether the polycapillary optics can produce an X-ray beam which can give more accurate dose painting due to the higher dose concentration at the focal spot. X-ray exposures were measured with …


Analytical Setup Margin For Spinal Sbrt Based On Measured Errors, Audrey Copeland Jun 2020

Analytical Setup Margin For Spinal Sbrt Based On Measured Errors, Audrey Copeland

LSU Master's Theses

Purpose: No consensus currently exists in the radiotherapy community about the correct margin size to use for spinal SBRT. Margins have been proposed to account for various errors individually, but not with all errors combined to result in a single margin value. The purpose of this work was to determine a setup margin for spinal SBRT based on known and measurable errors during radiotherapy to achieve at least 90% coverage of the clinical target volume (CTV) with the prescription dose for at least 90% of patients and not exceed a 30 Gy point dose or 23 Gy to 10% of …


Commissioning Of Micro-Cube Thermoluminescent Dosimeters For Small Field Dosimetry Quality Assurance In Radiotherapy, Brandon Luckett Aug 2019

Commissioning Of Micro-Cube Thermoluminescent Dosimeters For Small Field Dosimetry Quality Assurance In Radiotherapy, Brandon Luckett

Dissertations & Theses (Open Access)

Small field dosimetry presents complications and uncertainties that could be circumvented by using detectors which are smaller than the radiation field. This study evaluates the reproducibility and accuracy of TLD micro-cubes for use in stereotactic radiosurgery (SRS) remote auditing quality assurance (QA) for treatment centers participating in clinical trials. This study tested the hypothesis that TLD micro-cubes could be commissioned to evaluate small field dosimetry, and provide reproducibility within 3%, as well as assure agreement between measured dose and calculated doses to within 5%.

The aims of this thesis were to characterize and commission TLD micro-cubes as well as to …


High Frequency Percussive Ventilation For Tumor Motion Immobilization, Ina Marina Sala Jan 2019

High Frequency Percussive Ventilation For Tumor Motion Immobilization, Ina Marina Sala

Wayne State University Dissertations

This work investigates the use of High Frequency Percussive Ventilation as a technique for respiratory motion mitigation in radiotherapy. This technique was extensively investigated in several prospective and retrospective studies.

In an initial prospective study, we evaluated the feasibility of HFPV and chest-wall motion reduction, by recruiting 15 healthy volunteers to undergo HFPV with three commercially available interfaces. For direct tumor motion immobilization, a second prospective study was performed in which with ten lung cancer patients underwent HFPV while imaged with high frame rate fluoroscopy. Diaphragm motion and image artifacts were quantified in a prospective study of a healthy volunteer …


Utilizing Log Files For Treatment Planning And Delivery Qa In Radiotherapy, Carl W. Stanhope Jan 2019

Utilizing Log Files For Treatment Planning And Delivery Qa In Radiotherapy, Carl W. Stanhope

Wayne State University Theses

Purpose: Monte Carlo-based log file quality assurance (LF-MC QA) is investigated as an alternative method to phantom-based patient-specific quality assurance in radiotherapy (e.g. ArcCHECK QA (AC QA)).

Methods: First, the shortcomings of AC QA were investigated. The sensitivity dependence of ArcCHECK diodes on dose rate (in-field) and energy (primarily out-of-field) was quantified. LF-MC QA was then analyzed on the phantom geometry. Planned (‘Plan’) and LF-reconstructed CS and MC doses were compared with each other and AC measurement via statistical (mean ± StdDev(σ)) and gamma analyses to isolate dosimetric uncertainties and quantify the relative accuracies of AC QA and LF-MC QA. …


Exploring Subcellular Responses Of Prostate Cancer Cells To X-Ray Exposure By Raman Mapping, Maciej Roman, Agnieszka Panek, Hugh Byrne, Tomasz P Wrobel, Esen Efeoglu, Czeslawa Paluszkiewicz, Wojciech Maria Kwiatek Jan 2019

Exploring Subcellular Responses Of Prostate Cancer Cells To X-Ray Exposure By Raman Mapping, Maciej Roman, Agnieszka Panek, Hugh Byrne, Tomasz P Wrobel, Esen Efeoglu, Czeslawa Paluszkiewicz, Wojciech Maria Kwiatek

Articles

Understanding the response of cancer cells to ionising radiation is a crucial step in modern radiotherapy. Raman microspectroscopy, together with Partial Least Squares Regression (PLSR) analysis has been shown to be a powerful tool for monitoring biochemical changes of irradiated cells on the subcellular level. However, to date, the majority of Raman studies have been performed using a single spectrum per cell, giving a limited view of the total biochemical response of the cell. In the current study, Raman mapping of the whole cell area was undertaken to ensure a more comprehensive understanding of the changes induced by X-ray radiation. …


Evaluation Of Presage® As A 3d Dose Verification Tool In Proton Beams, Mitchell Carroll Dec 2018

Evaluation Of Presage® As A 3d Dose Verification Tool In Proton Beams, Mitchell Carroll

Dissertations & Theses (Open Access)

Radiotherapy techniques have advanced and radiation dose plans have become much more complex over the last decade. This is especially true in proton therapy, which involves extremely steep dose gradients as a result of positioning the Bragg peak to cover the volumes to be treated. The Bragg peak can be shifted significantly in the patient as a result of nonuniformities in the tissue composition in its path, which can result in treatment complications. Some traditional dose verification tools used in proton beam commissioning and treatment plan verification are film, TLD, and ionization chambers. Such 0D and 2D dosimeters are incapable …


Proposed Method For Measuring The Let Of Radiotherapeutic Particle Beams, Stephen D. Bello Nov 2017

Proposed Method For Measuring The Let Of Radiotherapeutic Particle Beams, Stephen D. Bello

Physics & Astronomy ETDs

The Bragg peak geometry of the depth dose distributions for hadrons allows for precise and effective dose delivery to tumors while sparing neighboring healthy tissue. Further, compared against other forms of radiotherapeutic treatments, such as electron beam therapy (EBT) or photons (x and \(\gamma\)-rays), hadrons create denser ionization events along the particle track, which induces irreparable damage to DNA, and thus are more effective at inactivating cancerous cells. The measurement of radiation's ability to inactivate cellular reproduction is the relative biological effectiveness (RBE). A quality related to the RBE that is a measurable physical property is the linear energy transfer …


Gate Monte Carlo Simulations In A Cloud Computing Environment, Blake Austin Rowedder Aug 2014

Gate Monte Carlo Simulations In A Cloud Computing Environment, Blake Austin Rowedder

UNLV Theses, Dissertations, Professional Papers, and Capstones

The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud …


Assessment Of The Dependence Of Ventilation Image Calculation From 4d-Ct On Deformation And Ventilation Algorithms, Kujtim Latifi Jan 2011

Assessment Of The Dependence Of Ventilation Image Calculation From 4d-Ct On Deformation And Ventilation Algorithms, Kujtim Latifi

USF Tampa Graduate Theses and Dissertations

Ventilation imaging using 4D-CT is a convenient and cost effective functional imaging methodology which might be of value in radiotherapy treatment planning to spare functional lung volumes. To calculate ventilation imaging from 4D-CT we must use deformable image registration (DIR). This study validates the DIR methods and investigates the dependence of calculated ventilation on DIR methods and ventilation algorithms.

The first hypothesis is if ventilation algorithms are robust then they will be insensitive to the precise DIR used provided the DIR is accurate. The second hypothesis is that the change in Houndsfield Unit (HU) method is less dependent on the …