Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 46

Full-Text Articles in Physics

Magnetic Field Penetration Technique To Study Field Shielding Of Multilayered Superconductors, Iresha Harshani Senevirathne, Alex Gurevich, Jean R. Delayen, A-M Valente-Feliciano Jan 2022

Magnetic Field Penetration Technique To Study Field Shielding Of Multilayered Superconductors, Iresha Harshani Senevirathne, Alex Gurevich, Jean R. Delayen, A-M Valente-Feliciano

Physics Faculty Publications

The SIS structure which consists of alternative thin layers of superconductors and insulators on a bulk niobium has been proposed to shield niobium cavity surface from high magnetic field and hence increase the accelerating gradient. The study of the behavior of multilayer superconductors in an external magnetic field is essential to optimize their SRF performance. In this work we report the development of a simple and efficient technique to measure penetration of magnetic field into bulk, thin film and multilayer superconductors. Experimental setup contains a small superconducting solenoid which can produce a parallel surface magnetic field up to 0.5 T …


Effect Of Random Pinning On Nonlinear Dynamics And Dissipation Of A Vortex Driven By A Strong Microwave Current, W.P.M.R. Pathirana, Alex Gurevich Jan 2021

Effect Of Random Pinning On Nonlinear Dynamics And Dissipation Of A Vortex Driven By A Strong Microwave Current, W.P.M.R. Pathirana, Alex Gurevich

Physics Faculty Publications

We report numerical simulations of a trapped elastic vortex driven by a strong ac magnetic field H(t)=Hsinωt parallel to the surface of a superconducting film. The surface resistance and the power dissipated by an oscillating vortex perpendicular to the film surface were calculated as functions of H and ω for different spatial distributions, densities, and strengths of pinning centers, including bulk pinning, surface pinning, and cluster pinning. Our simulations were performed for both the Bardeen-Stephen viscous vortex drag and the Larkin-Ovchinnikov (LO) drag coefficient η(v) decreasing with the vortex velocity v. The local residual surface resistance Ri(H) …


Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali Jan 2021

Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali

Electrical & Computer Engineering Faculty Publications

At or near atmospheric pressure, most transient discharges, particularly in molecular gases or gas mixture containing molecular gases, result in a space charge dominated transport called a streamer discharge. The excited species generation in such discharges forms the basis for plasma chemistry in most technological applications. In this paper, we simulate the propagation of streamers in atmospheric pressure N2 to understand the energy partitioning in the formation of various excited species and compare the results to a uniform Townsend discharge. The model is fully two-dimensional with azimuthal symmetry. The results show a significantly larger fraction of the energy goes …


Thermoelectric Porous Mof Based Hybrid Materials, Engelbert Redel, Helmut Baumgart Jan 2020

Thermoelectric Porous Mof Based Hybrid Materials, Engelbert Redel, Helmut Baumgart

Electrical & Computer Engineering Faculty Publications

Porous hybrid materials and MOF (Metal-Organic-Framework) films represent modern designer materials that exhibit many requirements of a near ideal and tunable future thermoelectric (TE) material. In contrast to traditional semiconducting bulk TE materials, porous hybrid MOF templates can be used to overcome some of the constraints of physics in bulk TE materials. These porous hybrid systems are amenable for simulation and modeling to design novel optimized electron-crystal phonon-glass materials with potentially very high ZT (figure of merit) numbers. Porous MOF and hybrid materials possess an ultra-low thermal conductivity, which can be further modulated by phonon engineering within their complex porous …


Electron Tunneling And X-Ray Photoelectron Spectoscopy Studies Of The Superconductiong Properties Of Nitrogen-Doped Niobium Resonator Cavities, Eric M. Lechner, Basu Dev Oli, Junki Makita, Gianluigi Ciovati, Alex Gurevich, Maria Iavarone Jan 2020

Electron Tunneling And X-Ray Photoelectron Spectoscopy Studies Of The Superconductiong Properties Of Nitrogen-Doped Niobium Resonator Cavities, Eric M. Lechner, Basu Dev Oli, Junki Makita, Gianluigi Ciovati, Alex Gurevich, Maria Iavarone

Physics Faculty Publications

We use scanning tunneling microscopy (STM) and spectroscopy (STS), and x-ray photoelectron spectroscopy (XPS) to investigate the effect of nitrogen doping on the surface electronic and chemical structures of cutouts from superconducting Nb radio-frequency cavities. The goal of this work is to get insights into the fundamental physics and materials mechanisms behind the striking decrease of the surface resistance with the radio-frequency magnetic field, which has been observed on N-doped Nb cavities. Our XPS measurements reveal significantly more oxidized Nb 3d states and a thinner metallic suboxide layer on the N-doped Nb surfaces, which is also confirmed by tunneling spectroscopy …


Gold/Qds-Embedded-Ceria Nanoparticles: Optical Fluorescence Enhancement As A Quenching Sensor, Nader Shehata, Effat Samir, Ishac Kandas Jan 2020

Gold/Qds-Embedded-Ceria Nanoparticles: Optical Fluorescence Enhancement As A Quenching Sensor, Nader Shehata, Effat Samir, Ishac Kandas

Electrical & Computer Engineering Faculty Publications

This work focuses on improving the fluorescence intensity of cerium oxide (ceria) nanoparticles (NPs) through added plasmonic nanostructures. Ceria nanoparticles are fluorescent nanostructures which can emit visible fluorescence emissions under violet excitation. Here, we investigated different added plasmonic nanostructures, such as gold nanoparticles (Au NPs) and Cadmium sulfide/selenide quantum dots (CdS/CdSe QDs), to check the enhancement of fluorescence intensity emissions caused by ceria NPs. Different plasmonic resonances of both aforementioned nanostructures have been selected to develop optical coupling with both fluorescence excitation and emission wavelengths of ceria. In addition, different additions whether in-situ or post-synthesis have been investigated. We found …


A Review: Thermal Stability Of Methylammonium Lead Halide Based Perovskite Solar Cells, Tanzila Tasnim Ava, Abdullah Al Mamun, Sylvain Marsillac, Gon Namkoong Jan 2019

A Review: Thermal Stability Of Methylammonium Lead Halide Based Perovskite Solar Cells, Tanzila Tasnim Ava, Abdullah Al Mamun, Sylvain Marsillac, Gon Namkoong

Electrical & Computer Engineering Faculty Publications

Perovskite solar cells have achieved photo-conversion efficiencies greater than 20%, making them a promising candidate as an emerging solar cell technology. While perovskite solar cells are expected to eventually compete with existing silicon-based solar cells on the market, their long-term stability has become a major bottleneck. In particular, perovskite films are found to be very sensitive to external factors such as air, UV light, light soaking, thermal stress and others. Among these stressors, light, oxygen and moisture-induced degradation can be slowed by integrating barrier or interface layers within the device architecture. However, the most representative perovskite absorber material, CH3 …


Ignition Of A Plasma Discharge Inside An Electrodeless Chamber: Methods And Characteristics, Mounir Laroussi Jan 2019

Ignition Of A Plasma Discharge Inside An Electrodeless Chamber: Methods And Characteristics, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

In this paper the generation and diagnostics of a reduced pressure (300 mTorr to 3 Torr) plasma generated inside an electrodeless containment vessel/chamber are presented. The plasma is ignited by a guided ionization wave emitted by a low temperature pulsed plasma jet. The diagnostics techniques include Intensified Charge Coupled Device (ICCD) imaging, emission spectroscopy, and Langmuir probe. The reduced-pressure discharge parameters measured are the magnitude of the electric field, the plasma electron number density and temperature, and discharge expansion speed.


Improved Gas Sensing Performance Of Ald Azo 3-D Coated Zno Nanorods, P. Lin, X. Chen, K. Zhang, H. Baumgart Dec 2018

Improved Gas Sensing Performance Of Ald Azo 3-D Coated Zno Nanorods, P. Lin, X. Chen, K. Zhang, H. Baumgart

Electrical & Computer Engineering Faculty Publications

This paper reports an enhancement on the sensing performance of ZnO nanorod ethanol sensors with a new approach by utilizing nested coatings of Aluminum doped ZnO (AZO) thin films by Atomic Layer Deposition (ALD) technology. ZnO nanorods were grown by the hydrothermal method with the ZnO seed layer synthesized on Silicon wafers by ALD. To enhance the sensing performance of ZnO nanorod ethanol sensors, multiple coated AZO thin film 3-D coatings were deposited on the surface of the intrinsic ZnO nanorods by ALD.To investigate the sensing performance of the ZnO nanorods sensor for the detection of ethanol vapor, a gas …


No2- And No3- Enhance Cold Atmospheric Plasma Induced Cancer Cell Death By Generation Of Onoo-, Dehui Xu, Qingjie Cui, Yujing Xu, Zhijie Liu, Zeyu Chen, Wenjie Xia, Hao Zhang, Dingxin Liu, Hailan Chen, Michael G. Kong Oct 2018

No2- And No3- Enhance Cold Atmospheric Plasma Induced Cancer Cell Death By Generation Of Onoo-, Dehui Xu, Qingjie Cui, Yujing Xu, Zhijie Liu, Zeyu Chen, Wenjie Xia, Hao Zhang, Dingxin Liu, Hailan Chen, Michael G. Kong

Bioelectrics Publications

Cold atmospheric plasma (CAP) is a rapidly developed technology that has been widely applied in biomedicine especially in cancer treatment. Due to the generation of various active species in plasma, CAP could induce various tumor cells death and showed a promising potential in cancer therapy. To enhance the biological effects of gas plasma, changing the discharging parameters is the most commonly used method, yet increasing discharging power will lead to a higher possibility of simultaneously damage surrounding tissues. In this study, by adding nontoxic concentration of additional nitrite and nitrate in the medium, we found that anti-tumor effect of CAP …


Current-Driven Production Of Vortex-Antivortex Pairs In Planar Josephson Junction Arrays And Phase Cracks In Long-Range Order, Francisco Estellés-Duart, Miguel Ortuño, Andrés M. Somoza, Valerii M. Vinokur, Alex Gurevich Oct 2018

Current-Driven Production Of Vortex-Antivortex Pairs In Planar Josephson Junction Arrays And Phase Cracks In Long-Range Order, Francisco Estellés-Duart, Miguel Ortuño, Andrés M. Somoza, Valerii M. Vinokur, Alex Gurevich

Physics Faculty Publications

Proliferation of topological defects like vortices and dislocations plays a key role in the physics of systems with long-range order, particularly, superconductivity and superfluidity in thin films, plasticity of solids, and melting of atomic monolayers. Topological defects are characterized by their topological charge reflecting fundamental symmetries and conservation laws of the system. Conservation of topological charge manifests itself in extreme stability of static topological defects because destruction of a single defect requires overcoming a huge energy barrier proportional to the system size. However, the stability of driven topological defects remains largely unexplored. Here we address this issue and investigate numerically …


Characterization And Analysis Of Ultrathin Cigs Films And Solar Cells Deposited By 3-Stage Process, Grace Rajan, Krishna Aryal, Shankar Karki, Puruswottam Aryal, Robert W. Collins, Sylvain Marsillac May 2018

Characterization And Analysis Of Ultrathin Cigs Films And Solar Cells Deposited By 3-Stage Process, Grace Rajan, Krishna Aryal, Shankar Karki, Puruswottam Aryal, Robert W. Collins, Sylvain Marsillac

Electrical & Computer Engineering Faculty Publications

In view of the large-scale utilization of Cu(In,Ga)Se2 (CIGS) solar cells for photovoltaic application, it is of interest not only to enhance the conversion efficiency but also to reduce the thickness of the CIGS absorber layer in order to reduce the cost and improve the solar cell manufacturing throughput. In situ and real-time spectroscopic ellipsometry (RTSE) has been used conjointly with ex situ characterizations to understand the properties of ultrathin CIGS films. This enables monitoring the growth process, analyzing the optical properties of the CIGS films during deposition, and extracting composition, film thickness, grain size, and surface roughness which …


Imaging Of Super-Fast Dynamics And Flow Instabilities Of Superconducting Vortices, L. Embon, Y. Anahory, Ž L. Jelić, E. O. Lachman, Y. Myasoedov, M. E. Huber, G. P. Mikitik, A. V. Silhanek, M. V. Milošević, A Gurevich, E. Z. Zeldov Jan 2017

Imaging Of Super-Fast Dynamics And Flow Instabilities Of Superconducting Vortices, L. Embon, Y. Anahory, Ž L. Jelić, E. O. Lachman, Y. Myasoedov, M. E. Huber, G. P. Mikitik, A. V. Silhanek, M. V. Milošević, A Gurevich, E. Z. Zeldov

Physics Faculty Publications

Quantized magnetic vortices driven by electric current determine key electromagnetic properties of superconductors. While the dynamic behavior of slow vortices has been thoroughly investigated, the physics of ultrafast vortices under strong currents remains largely unexplored. Here, we use a nanoscale scanning superconducting quantum interference device to image vortices penetrating into a superconducting Pb film at rates of tens of GHz and moving with velocities of up to tens of km/s, which are not only much larger than the speed of sound but also exceed the pair-breaking speed limit of superconducting condensate. These experiments reveal formation of mesoscopic vortex channels which …


Light Soaking Phenomena In Organic-Inorganic Mixed Halide Perovskite Single Crystals, Hye Ryung Byun, Dae Young Park, Hye Min Oh, Gon Namkoong, Mun Seok Jeong Jan 2017

Light Soaking Phenomena In Organic-Inorganic Mixed Halide Perovskite Single Crystals, Hye Ryung Byun, Dae Young Park, Hye Min Oh, Gon Namkoong, Mun Seok Jeong

Electrical & Computer Engineering Faculty Publications

Recently, organic inorganic mixed halide perovskite (MAPbX3; MA = CH3NH3+, X = Cl-, Br-, or I-) single crystals with low defect densities have been highlighted as candidate materials for high-efficiency photovoltaics and optoelectronics. Here we report the optical and structural investigations of mixed halide perovskite (MAPbBr3-xIx) single crystals. Mixed halide perovskite single crystals showed strong light soaking phenomena with light illumination conditions that were correlated to the trapping and detrapping events from defect sites. By systematic investigation with optical analysis, we found that the …


Uv Light-Induced Aggregation Of Titania Submicron Particles, Can Zhou, Yashar Bashirzadeh, Timothy A. Bernadowsky Jr., Xiaoyu Zhang Jan 2016

Uv Light-Induced Aggregation Of Titania Submicron Particles, Can Zhou, Yashar Bashirzadeh, Timothy A. Bernadowsky Jr., Xiaoyu Zhang

Mechanical & Aerospace Engineering Faculty Publications

In this study, aggregation of TiO2 (rutile and anatase) submicron particles in deionized (DI) water under ultra-violet (UV) light irradiation was investigated. While no aggregation was observed in the dark, rutile and anatase submicron particles started aggregating upon application of UV light and ceased aggregation in about 2 and 8.4 h, respectively. It has been demonstrated that UV light directly mitigated the particle mobility of TiO2, resulting in a neutralization effect of the Zeta potential. It was also observed that rutile particles aggregated much faster than anatase particles under UV radiation, indicating that the Zeta potential of …


Measurements Of Rf Properties Of Thin Film Nb3Sn Superconducting Multilayers Using A Calorimetric Technique, S. Sosa-Guitron, A. Gurevich, J. Delayen, E. Chang Beom, C. Sundahl, G. V. Eremeev Jan 2015

Measurements Of Rf Properties Of Thin Film Nb3Sn Superconducting Multilayers Using A Calorimetric Technique, S. Sosa-Guitron, A. Gurevich, J. Delayen, E. Chang Beom, C. Sundahl, G. V. Eremeev

Physics Faculty Publications

Results of RF tests of NB3SN thin film samples related to the superconducting multilayer coating development are presented. We have investigated thin film samples of Nb3Sn/Al2O3/Nb with Nb3Sn layer thicknesses of 50 nm and 100 nm using a Surface Impedance Characterization system. These samples were measured in the temperature range 4 K-19 K, where significant screening by Nb3Sn layers was observed below 16-17 K, consistent with the bulk critical temperature of Nb3Sn.


Simulation Study Of Hemt Structures With Hfo2 Cap Layer For Mitigating Inverse Piezoelectric Effect Related Device Failures, Deepthi Nagulapally, Ravi P. Joshi, Aswini Pradhan Jan 2015

Simulation Study Of Hemt Structures With Hfo2 Cap Layer For Mitigating Inverse Piezoelectric Effect Related Device Failures, Deepthi Nagulapally, Ravi P. Joshi, Aswini Pradhan

Electrical & Computer Engineering Faculty Publications

The Inverse Piezoelectric Effect (IPE) is thought to contribute to possible device failure of GaN High Electron Mobility Transistors (HEMTs). Here we focus on a simulation study to probe the possible mitigation of the IPE by reducing the internal electric fields and related elastic energy through the use of high-k materials. Inclusion of a HfO2 "cap layer" above the AlGaN barrier particularly with a partial mesa structure is shown to have potential advantages. Simulations reveal even greater reductions in the internal electric fields by using "field plates" in concert with high-k oxides


Repeated Load Relaxation Testing Of Pure Polycrystalline Nickel At Room Temperature Using Nanoindentation, D. E. Stegall, M. A. Mamun, B. Crawford, A, A. Elmustafa Jan 2014

Repeated Load Relaxation Testing Of Pure Polycrystalline Nickel At Room Temperature Using Nanoindentation, D. E. Stegall, M. A. Mamun, B. Crawford, A, A. Elmustafa

Mechanical & Aerospace Engineering Faculty Publications

We present the results of repeated relaxation tests using nanoindentation to derive the activation volume of the dislocation velocity and the ratios of the dislocation density and dislocation velocity. An experimental technique, based on classical uniaxial relaxation experiments, was developed to establish a constant strain during repeated load relaxation transients and then to calculate the stiffness of unloading, and therefore the hardness, across the transients with acceptable results. We found that the activation volume of the dislocation velocity from our nanoindentation methodology was in good agreement when compared to the same reported for uniaxial experiments. © 2014 AIP Publishing LLC.


Polarization Of Bi2te3 Thin Film In A Floating-Gate Capacitor Structure, Hui Yuan, Kai Zhang, Haitao Li, Hao Zhu, John E. Bonevich, Helmut Baumgart, Curt A. Richter, Qiliang Li Jan 2014

Polarization Of Bi2te3 Thin Film In A Floating-Gate Capacitor Structure, Hui Yuan, Kai Zhang, Haitao Li, Hao Zhu, John E. Bonevich, Helmut Baumgart, Curt A. Richter, Qiliang Li

Electrical & Computer Engineering Faculty Publications

Metal-Oxide-Semiconductor (MOS) capacitors with Bi2Te3 thin film sandwiched and embedded inside the oxide layer have been fabricated and studied. The capacitors exhibit ferroelectric-like hysteresis which is a result of the robust, reversible polarization of the Bi2Te3 thin film while the gate voltage sweeps. The temperature-dependent capacitance measurement indicates that the activation energy is about 0.33 eV for separating the electron and hole pairs in the bulk of Bi2Te3, and driving them to either the top or bottom surface of the thin film. Because of the fast polarization speed, potentially excellent …


Physical Analysis Of Vo2 Films Grown By Atomic Layer Deposition And Rf Magnetron Sputtering, Madhavi Tangirala, Kai Zhang, David Nminibapiel, Venkateswara Pallem, Christian Dussarrat, Wei Cao, Thomas N. Adam, Corbet S. Johnson, Hani E. Elsayed-Ali, Helmut Baumgart Jan 2014

Physical Analysis Of Vo2 Films Grown By Atomic Layer Deposition And Rf Magnetron Sputtering, Madhavi Tangirala, Kai Zhang, David Nminibapiel, Venkateswara Pallem, Christian Dussarrat, Wei Cao, Thomas N. Adam, Corbet S. Johnson, Hani E. Elsayed-Ali, Helmut Baumgart

Electrical & Computer Engineering Faculty Publications

Among the many vanadium suboxides and different stoichiometries, VO2 has received considerable attention due to its remarkable metal-insulator transition (MIT) behavior, which causes a significant reversible change in its electrical and optical properties occurring across the phase transition at 67°C. The initially amorphous VO2 thin films were fabricated by the emerging, Atomic Layer Deposition (ALD) technique with (tetrakis[ethylmethylamino]vanadium) {V(NEtMe)4} as precursor and H2O vapor as oxidation agent. For benchmarking we have also used the RF Magnetron Sputtering technique to deposit metallic vanadium thin films, which were later oxidized during furnace annealing. Post annealing of …


Stm Study Of Pulsed Laser Assisted Growth Of Ge Quantum Dot On Si(1 0 0)-(2 × 1), Ali Orguz Er, Hani E. Elsayed-Ali Jan 2014

Stm Study Of Pulsed Laser Assisted Growth Of Ge Quantum Dot On Si(1 0 0)-(2 × 1), Ali Orguz Er, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Ge quantum dot formation on Si(1 0 0)-(2 × 1) by nanosecond pulsed laser deposition under laser excitation was investigated. Scanning tunneling microscopy was used to probe the growth mode and morphology. Excitation was performed during deposition using laser energy density of 25-100 mJ/cm 2. Faceted islands were achieved at a substrate temperature of ∼250 °C only when using laser excitation. The island morphology changes with increased laser excitation energy density although the faceting of the individual islands remains the same. The size of the major length of islands increases with the excitation laser energy density. A purely electronic …


Atmospheric Pressure He-Air Plasma Jet: Breakdown Process And Propagation Phenomenon, Asma Begum, Mounir Laroussi, Mohammad Rasel Pervez Jun 2013

Atmospheric Pressure He-Air Plasma Jet: Breakdown Process And Propagation Phenomenon, Asma Begum, Mounir Laroussi, Mohammad Rasel Pervez

Electrical & Computer Engineering Faculty Publications

In this paper He-discharge (plasma jet/bullet) in atmospheric pressure air and its progression phenomenon has been studied experimentally using ICCD camera, optical emission spectroscopy (OES) and calibrated dielectric probe measurements. The repetitive nanosecond pulse has applied to a plasma pencil to generate discharge in the helium gas channel. The discharge propagation speed was measured from the ICCD images. The axial electric field distribution in the plasma jet is inferred from the optical emission spectroscopic data and from the probe measurement. The correlation between the jet velocities, jet length with the pulse duration is established. It shows that the plasma jet …


Electric-Field-Induced Interfacial Instabilities Of A Soft Elastic Membrane Confined Between Viscous Layers, Mohar Dey, Dipankar Bandyopadhyay, Ashutosh Sharma, Shizhi Qian, Sang Woo Joo Jan 2012

Electric-Field-Induced Interfacial Instabilities Of A Soft Elastic Membrane Confined Between Viscous Layers, Mohar Dey, Dipankar Bandyopadhyay, Ashutosh Sharma, Shizhi Qian, Sang Woo Joo

Mechanical & Aerospace Engineering Faculty Publications

We explore the electric-field-induced interfacial instabilities of a trilayer composed of a thin elastic film confined between two viscous layers. A linear stability analysis (LSA) is performed to uncover the growth rate and length scale of the different unstable modes. Application of a normal external electric field on such a configuration can deform the two coupled elastic-viscous interfaces either by an in-phase bending or an antiphase squeezing mode. The bending mode has a long-wave nature, and is present even at a vanishingly small destabilizing field. In contrast, the squeezing mode has finite wave-number characteristics and originates only beyond a threshold …


Growth Analysis Of (Ag,Cu)Inse2 Thin Films Via Real Time Spectroscopic Ellipsometry, S. A. Little, V. Ranjan, R. W. Collins, S. Marsillac Jan 2012

Growth Analysis Of (Ag,Cu)Inse2 Thin Films Via Real Time Spectroscopic Ellipsometry, S. A. Little, V. Ranjan, R. W. Collins, S. Marsillac

Electrical & Computer Engineering Faculty Publications

In situ and ex situ characterization methods have been applied to investigate the properties of (Ag,Cu)InSe2 (ACIS) thin films. Data acquired from real time spectroscopic ellipsometry (RTSE) experiments were analyzed to extract the evolution of the nucleating, bulk, and surface roughness layer thicknesses. The evolution of these layer thicknesses suggests a transition from Volmer-Weber to Stranski-Krastanov type behavior when Cu is replaced by Ag. The complex dielectric functions of ACIS at both deposition and room temperature as a function of film composition were also extracted from the RTSE data, enabling parameterization of the alloy optical properties.


Analysis Of Interband, Intraband, And Plasmon Polariton Transitions In Silver Nanoparticle Films Via In Situ Real-Time Spectroscopic Ellipsometry, S. A. Little, R. W. Collins, S. Marsillac Mar 2011

Analysis Of Interband, Intraband, And Plasmon Polariton Transitions In Silver Nanoparticle Films Via In Situ Real-Time Spectroscopic Ellipsometry, S. A. Little, R. W. Collins, S. Marsillac

Electrical & Computer Engineering Faculty Publications

The dielectric function of Ag nanoparticle films, deduced from an analysis of in situ real-time spectroscopic ellipsometry (RTSE) measurements, is found to evolve with time during deposition in close consistency with the film structure, deduced in the same RTSE analysis. In the nucleation regime, the intraband dielectric function component is absent and plasmon polariton behavior dominates. Only at nuclei contact, does the intraband amplitude appear, increasing above zero. Both intraband and plasmon amplitudes coexist during surface smoothening associated with coalescence. The intraband relaxation time increases rapidly after surface smoothening is complete, also in consistency with the thin film structural evolution.


Electronically Enhanced Surface Diffusion During Ge Growth On Si(100), Ali Orguz Er, Hani E. Elsayed-Ali Jan 2011

Electronically Enhanced Surface Diffusion During Ge Growth On Si(100), Ali Orguz Er, Hani E. Elsayed-Ali

Physics Faculty Publications

The effect of nanosecond pulsed laser excitation on surface diffusion during the growth of Ge on Si(100) at 250 °C was studied. In situ reflection high-energy electron diffraction was used to measure the surface diffusion coefficient while ex situ atomic force microscopy was used to probe the structure and morphology of the grown quantum dots. The results show that laser excitation of the substrate increases the surface diffusion during the growth of Ge on Si(100), changes the growth morphology, improves the crystalline structure of the grown quantum dots, and decreases their size distribution. A purely electronic mechanism of enhanced surface …


Nonuniformity In Lattice Contraction Of Bismuth Nanoclusters Heated Near Its Melting Point, A. Esmail, M. Abdel-Fattah, Hani E. Elsayed-Ali Jan 2011

Nonuniformity In Lattice Contraction Of Bismuth Nanoclusters Heated Near Its Melting Point, A. Esmail, M. Abdel-Fattah, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The structural properties of bismuth nanoclusters were investigated with transmission high-energy electron diffraction from room temperature up to 525 ± 6 K. The Bi nanoclusters were fabricated by thermal evaporation at room temperature on transmission electron microscope grids coated with an ultrathin carbon film, followed by thermal and femtosecond laser annealing. The annealed sample had an average cluster size of ∼14 nm along the minor axis and ∼16 nm along the major axis. The Debye temperature of the annealed nanoclusters was found to be 53 ± 6 K along the [012] direction and 86 ± 9 K along the [110] …


Precise Control Of Highly Ordered Arrays Of Nested Semiconductor/Metal Nanotubes, Diefeng Gu, Helmut Baumgart, Kandabara Tapily, Pragya Shrestha, Gon Namkoong, Xianyu Ao, Frank Müller Jan 2011

Precise Control Of Highly Ordered Arrays Of Nested Semiconductor/Metal Nanotubes, Diefeng Gu, Helmut Baumgart, Kandabara Tapily, Pragya Shrestha, Gon Namkoong, Xianyu Ao, Frank Müller

Electrical & Computer Engineering Faculty Publications

Lithographically defined microporous templates in conjunction with the atomic layer deposition (ALD) technique enable remarkable control of complex novel nested nanotube structures. So far three-dimensional control of physical process parameters has not been fully realized with high precision resolution, and requires optimization in order to achieve a wider range of potential applications. Furthermore, the combination of composite insulating oxide layers alternating with semiconducting layers and metals can provide various types of novel applications and eventually provide unique and advanced levels of multifunctional nanoscale devices. Semiconducting TiO2 nanotubes have potential applications in photovoltaic devices. The combination of nanostructured semiconducting materials …


Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali Jan 2011

Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Low temperature epitaxy of Ge quantum dots on Si (100) - (2×1) by femtosecond pulsed laser deposition under femtosecond laser excitation was investigated. Reflection high-energy electron diffraction and atomic force microscopy were used to analyze the growth mode and morphology. Epitaxial growth was achieved at ∼70 °C by using femtosecond laser excitation of the substrate. A purely electronic mechanism of enhanced surface diffusion of the Ge adatoms is proposed. © 2011 American Institute of Physics. [doi:10.1063/1.3537813]


Excitation-Induced Germanium Quantum Dot Formation On Si (100)-(2×1), Ali Oguz Er, Hani E. Elsayed-Ali Jan 2010

Excitation-Induced Germanium Quantum Dot Formation On Si (100)-(2×1), Ali Oguz Er, Hani E. Elsayed-Ali

Physics Faculty Publications

The effect of nanosecond pulsed laser excitation on the self-assembly of Ge quantum dots grown by pulsed laser deposition on Si (100)-(2×1) was studied. In situ reflection high-energy electron diffraction and ex situ atomic force microscopy were used to probe the quantum dot structure and morphology. At room temperature, applying the excitation laser decreased the surface roughness of the grown Ge film. With surface electronic excitation, crystalline Ge quantum dots were formed at 250 °C, a temperature too low for their formation without excitation. At a substrate temperature of 390 °C, electronic excitation during growth was found to improve the …