Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Air Force Institute of Technology

Semiconductors

Articles 1 - 3 of 3

Full-Text Articles in Physics

Complementary Metal-Oxide Semiconductor-Compatible Detector Materials With Enhanced 1550 Nm Responsivity Via Sn-Doping Of Ge/Si(100), Richard T. Beeler, Jay Mathews, Mee-Yi Ryu, Yung-Kee Yeo, Jose Menendez, John Kouvetakis May 2011

Complementary Metal-Oxide Semiconductor-Compatible Detector Materials With Enhanced 1550 Nm Responsivity Via Sn-Doping Of Ge/Si(100), Richard T. Beeler, Jay Mathews, Mee-Yi Ryu, Yung-Kee Yeo, Jose Menendez, John Kouvetakis

Faculty Publications

Previously developed methods used to grow Ge1−ySny alloys on Si are extended to Sn concentrations in the 1019−1020 cm−3 range. These concentrations are shown to be sufficient to engineer large increases in the responsivity of detectors operating at 1550 nm. The dopant levels of Sn are incorporated at temperatures in the 370–390 °C range, yielding atomically smooth layers devoid of threading defects at high growth rates of 15–30 nm/min. These conditions are far more compatible with complementary metal-oxide semiconductor processing than the high growth and processing temperatures required to achieve the same …


Optical Characterization And Modeling Of Compositionally Matched Indium Arsenide-Antimonide Bulk And Multiple Quantum Well Semiconductors, Scott C. Phillips Mar 2004

Optical Characterization And Modeling Of Compositionally Matched Indium Arsenide-Antimonide Bulk And Multiple Quantum Well Semiconductors, Scott C. Phillips

Theses and Dissertations

Indium arsenide-antimonide (InAsSb) semiconductors have been determined to emit in the 3-5 micrometer range, the window of interest for countermeasures against infrared electro-optical threats. This experiment set out to cross the bulk to quantum well characterization barrier by optically characterizing two sets of compositionally matched type I quantum well and bulk well material samples. Absorption measurements determined the band gap energy of the bulk samples and the first allowed subband transition for the quantum wells. By collecting absorption spectra at different temperatures, the trend of the energy transitions was described by fitting a Varshni equation to them. The expected result …


Numerical Study Of Optical Delay In Semiconductor Multilayer Distributed Bragg Reflector And Tunable Microcavity Structures, Michael I. K. Etan Mar 2001

Numerical Study Of Optical Delay In Semiconductor Multilayer Distributed Bragg Reflector And Tunable Microcavity Structures, Michael I. K. Etan

Theses and Dissertations

The Air Force has a growing need for the greater bandwidth, speed, and flexibility offered by optical communication links. Future space systems and airborne platforms will most likely use optical signals for efficient power transmission and to minimize the possibility of spoofing and eavesdropping. Tunable optical delays play an important role in the implementation of free space optical communication links. The primary challenge in implementing these systems is the active maintenance of coherent wave fronts across the system's optical aperture. For space applications, this aperture may he hundreds of meters in diameter. Spatial segmentation of a large aperture into smaller …