Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

External Galaxies

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 31

Full-Text Articles in Physics

Using Deep Neural Networks To Classify Astronomical Images, Andrew D. Macpherson May 2023

Using Deep Neural Networks To Classify Astronomical Images, Andrew D. Macpherson

Honors Projects

As the quantity of astronomical data available continues to exceed the resources available for analysis, recent advances in artificial intelligence encourage the development of automated classification tools. This paper lays out a framework for constructing a deep neural network capable of classifying individual astronomical images by describing techniques to extract and label these objects from large images.


Hunting For Fast Radio Bursts From Messier 82: Exploring The Frb--Magnetar Connection, Susie Paine May 2022

Hunting For Fast Radio Bursts From Messier 82: Exploring The Frb--Magnetar Connection, Susie Paine

Macalester Journal of Physics and Astronomy

Fast radio bursts (FRBs) are short-duration radio pulses of cosmological origin. Among the most common sources predicted to explain this phenomenon are bright pulses from a class of extremely highly magnetized neutron stars known as magnetars. In 2020, a Galactic magnetar produced an FRB-like burst, allowing researchers to constrain the Galactic magnetar burst rate. We assume that the magnetar burst rate scales with star formation rate and test an important prediction for similar bursts in nearby galaxies. Messier 82 (M82) has a star formation rate 40 times that of the Milky Way, implying that the magnetar burst rate would be …


Emergent Spectra Of Young X-Ray Emitting Populations Across Environments, Alex Siebenmorgen May 2022

Emergent Spectra Of Young X-Ray Emitting Populations Across Environments, Alex Siebenmorgen

Physics Undergraduate Honors Theses

We construct reasonably accurate models of the X-Ray spectra of a multitude of sources in M51. We construct both average and individual models for the sources, which are split into 16 groups as the counts per source increases. Then, we create a plot to show how the model-predicted values of column density (nH) and photon index (gamma) change with luminosity. These models will be used to create an accurate X-Ray stellar energy distribution (SED) for M51, and to better understand how the SED changes with environmental factors like metallicity and star formation rate (SFR).


Exploring The Glow Of The Universe In Gamma-Rays And Hunting Distant Agn, Changam Meenakshi Rajagopal May 2022

Exploring The Glow Of The Universe In Gamma-Rays And Hunting Distant Agn, Changam Meenakshi Rajagopal

All Dissertations

The entirety of the γ-ray radiation permeating our Universe is encoded in the extragalactic γ-ray background. This is a superposition of resolved sources, mostly powerful relativistic jets powered by supermassive black holes, i.e., blazars, and an unresolved isotropic component, aka, the diffuse isotropic gamma-ray background (IGRB). Studying the IGRB can help unveil its composition, as well as unearth multi-messenger relationships between the intensities of PeV neutrinos, ultra high energy cosmic rays (> 1018 eV), and sub-TeV γ-rays. The comparable energy budgets of these three phenomena (neutrinos, UHECR, and γ-rays) indicates a physical connection or a common source amongst them. On …


Updated Analysis Of An Unexpected Correlation Between Dark Matter And Galactic Ellipticity, D. M. Winters, Alexandre Deur, X. Zheng Jan 2022

Updated Analysis Of An Unexpected Correlation Between Dark Matter And Galactic Ellipticity, D. M. Winters, Alexandre Deur, X. Zheng

Physics Faculty Publications

We investigate a correlation between the dark matter content of elliptical galaxies and their ellipticity ϵ that was initially reported in 2014. We use new determinations of dark matter and ellipticities that are posterior to that time. Our data set consists of 237 elliptical galaxies passing a strict set of criteria that selects a homogeneous sample of typical elliptical galaxies. We find a relation between the mass-to-light ratio and ellipticity ϵ that is well fitted by M/L = (14.1 ± 5.4)ϵ, which agrees with the result reported in 2014. Our analysis includes 135 galaxies that were not in …


A Detailed X-Ray Analysis Of The Cold Front In Relics Cluster A2163, Anne Poy Jan 2021

A Detailed X-Ray Analysis Of The Cold Front In Relics Cluster A2163, Anne Poy

CMC Senior Theses

Galaxy clusters are the largest gravitationally bound objects in the Universe. Studying them can teach us about how they merge and grow, which in turn provides unparalleled information about the history of the evolution of the Universe. X-ray observations of galaxy clusters have uncovered substructure in the hot, X-ray emitting gas known as the intracluster mediums (ICM). Substructure indicates that the ICM has been churned up, possibly by a significant off-axis merger event. This substructure includes cold fronts, sloshing spirals, and shocks. We present deep Chandra observations of the merging cluster Abell 2163. We investigate the global spectrum and find …


Variability Of Active Galactic Nuclei From Differential Photometry, Nicholas Steven Yee Sep 2020

Variability Of Active Galactic Nuclei From Differential Photometry, Nicholas Steven Yee

Physics

The Seoul AGN Monitoring Project, or SAMP for short, is an international project (PI Jonghak Woo from Korea) with the goal of measuring the masses of black holes residing in the center of massive active galactic nuclei (AGNs). AGNs are some of the brightest objects in the universe. Their light is attributed to the accretion of material onto the black hole. However, these objects are too distant to spatially resolve the gravitational sphere of influence of the black hole directly. Instead, we use a technique called reverberation mapping which observes the variability of the AGN power-law continuum emission and the …


Hyper Wide Field Imaging Of The Local Group Dwarf Irregular Galaxy Ic 1613: An Extended Component Of Metal-Poor Stars, Ragadeepika Pucha, Jeffrey Carlin, Beth Willman, Jay Strader, David Sand, Keith Bechtol, Jean Brodie, Denija Crnojević, Duncan Forbes, Christopher Garling, Jonathan Hargis, Annika Peter, Aaron Romanowsky Jul 2019

Hyper Wide Field Imaging Of The Local Group Dwarf Irregular Galaxy Ic 1613: An Extended Component Of Metal-Poor Stars, Ragadeepika Pucha, Jeffrey Carlin, Beth Willman, Jay Strader, David Sand, Keith Bechtol, Jean Brodie, Denija Crnojević, Duncan Forbes, Christopher Garling, Jonathan Hargis, Annika Peter, Aaron Romanowsky

Faculty Publications

Stellar halos offer fossil evidence for hierarchical structure formation. Since halo assembly is predicted to be scale-free, stellar halos around low-mass galaxies constrain properties such as star formation in the accreted subhalos and the formation of dwarf galaxies. However, few observational searches for stellar halos in dwarfs exist. Here we present gi photometry of resolved stars in isolated Local Group dwarf irregular galaxy IC 1613 (M sstarf ~ 108 M ⊙). These Subaru/Hyper Suprime-Cam observations are the widest and deepest of IC 1613 to date. We measure surface density profiles of young main-sequence, intermediate to old red giant branch, and …


Spatially Resolved Stellar Kinematics Of The Ultra-Diffuse Galaxy Dragonfly 44. I. Observations, Kinematics, And Cold Dark Matter Halo Fits, Pieter Van Dokkum, Asher Wasserman, Shany Danieli, Roberto Abraham, Jean Brodie, Charlie Conroy, Duncan Forbes, Christopher Martin, Matt Matuszewski, Aaron Romanowsky, Alexa Villaume Jul 2019

Spatially Resolved Stellar Kinematics Of The Ultra-Diffuse Galaxy Dragonfly 44. I. Observations, Kinematics, And Cold Dark Matter Halo Fits, Pieter Van Dokkum, Asher Wasserman, Shany Danieli, Roberto Abraham, Jean Brodie, Charlie Conroy, Duncan Forbes, Christopher Martin, Matt Matuszewski, Aaron Romanowsky, Alexa Villaume

Faculty Publications

We present spatially resolved stellar kinematics of the well-studied ultra-diffuse galaxy (UDG) Dragonfly 44, as determined from 25.3 hr of observations with the Keck Cosmic Web Imager. The luminosity-weighted dispersion within the half-light radius is ${\sigma }_{1/2}={33}_{-3}^{+3}$ km s−1, lower than what we had inferred before from a DEIMOS spectrum in the Hα region. There is no evidence for rotation, with ${V}_{\max }/\langle \sigma \rangle \lt 0.12$ (90% confidence) along the major axis, in possible conflict with models where UDGs are the high-spin tail of the normal dwarf galaxy distribution. The spatially averaged line profile is more peaked than a …


Searching For Supermassive Binary Black Holes And Their Gravitational Waves, Karishma Bansal Jul 2019

Searching For Supermassive Binary Black Holes And Their Gravitational Waves, Karishma Bansal

Physics & Astronomy ETDs

The recent discovery of gravitational waves (GWs) by the LIGO collaboration has opened a new observing window on the universe, but it is limited to the GWs in the frequency range of 10-1000 Hz. The main motivation of this thesis is to consider the possibility of detecting low frequency (nHz) GWs. In the pursuit of these waves, we need to understand their source of origin and build a detector with the required sensitivity. Low-frequency waves are expected as a result of coalescing binary supermassive black holes (SMBBHs). We hope to detect these waves in the near future using pulsar timing …


New Constraints On Early-Type Galaxy Assembly From Spectroscopic Metallicities Of Globular Clusters In M87, Alexa Villaume, Aaron Romanowsky, Jean Brodie, Jay Strader Jul 2019

New Constraints On Early-Type Galaxy Assembly From Spectroscopic Metallicities Of Globular Clusters In M87, Alexa Villaume, Aaron Romanowsky, Jean Brodie, Jay Strader

Faculty Publications

The observed characteristics of globular cluster (GC) systems, such as metallicity distributions, are commonly used to place constraints on galaxy formation models. However, obtaining reliable metallicity values is particularly difficult because of our limited means to obtain high quality spectroscopy of extragalactic GCs. Often, "color–metallicity relations" are invoked to convert easier-to-obtain photometric measurements into metallicities, but there is no consensus on what form these relations should take. In this paper we make use of multiple photometric data sets and iron metallicity values derived from applying full-spectrum stellar population synthesis models to deep Keck/LRIS spectra of 177 GCs centrally located around …


Spatially Resolved Stellar Populations And Kinematics With Kcwi: Probing The Assembly History Of The Massive Early-Type Galaxy Ngc 1407, Anna Ferré-Mateu, Duncan Forbes, Richard Mcdermid, Aaron Romanowsky, Jean Brodie Jun 2019

Spatially Resolved Stellar Populations And Kinematics With Kcwi: Probing The Assembly History Of The Massive Early-Type Galaxy Ngc 1407, Anna Ferré-Mateu, Duncan Forbes, Richard Mcdermid, Aaron Romanowsky, Jean Brodie

Faculty Publications

Using the newly commissioned Keck Cosmic Web Imager (KCWI) instrument on the Keck II telescope, we analyze the stellar kinematics and stellar populations of the well-studied massive early-type galaxy (ETG) NGC 1407. We obtained high signal-to-noise integral field spectra for a central and an outer (around one effective radius toward the southeast direction) pointing with integration times of just 600 s and 2400 s, respectively. We confirm the presence of a kinematically distinct core also revealed by VLT/MUSE data of the central regions. While NGC 1407 was previously found to have stellar populations characteristic of massive ETGs (with radially constant …


Primordial Black Hole Atoms, David Zwick, Tyler Hanover, Brian Nepper Apr 2018

Primordial Black Hole Atoms, David Zwick, Tyler Hanover, Brian Nepper

STEM Student Research Symposium Posters

Primordial black holes are thought to have been formed at the early stages of the universe in the presence of non-homogeneous density distributions of dark matter. We are working under the assumption that dark matter consists of elementary low mass particles, specifically, spin 1/2 fermions. We further assume that dark matter is electrically neutral, thus its main interaction is gravitational. We investigate dark matter spin 1/2 fermions in orbit around a black hole atom and consider mass ranges for which the quantum description is appropriate. Solutions to the Dirac equation are utilized to describe the radial mass distribution of primordial …


Energy From Active Galactic Nuclei And The Effects On Host Spiral Galaxies, Amanda Schilling Dec 2017

Energy From Active Galactic Nuclei And The Effects On Host Spiral Galaxies, Amanda Schilling

Graduate Theses and Dissertations

I have investigated the energy output of active galactic nuclei (AGN) in order to understand how these objects evolve and the impact they may have on host galaxies. First, I looked at a sample of 96 AGN at redshifts $z \sim 2, 3,$ and $4$ which have imaging and thus luminosity measurements in the $griz$ and $JHK$ observed wavebands. For these galaxies, I have co-epochal data across those bands which accounted for variability in AGN luminosity. I used the luminosity measurements in the five bands to construct spectral energy distributions (SED) in the emitted optical-UV bands for each AGN. I …


Molecular Tracers Of Star Formation Feedback In Nearby Galaxies, Mark Gorski Sep 2017

Molecular Tracers Of Star Formation Feedback In Nearby Galaxies, Mark Gorski

Physics & Astronomy ETDs

The energy and momentum injected into the ISM from stars has a drastic effect on the star formation history of a galaxy. This is called feedback. It is responsible for the inefficient collapse of the ISM into stars. The ``Survey of Water and Ammonia in Nearby Galaxies" (SWAN) is a survey of molecular line tracers in four nearby galaxies. By using molecular tracers of feedback, we provide insights into the star forming ecosystem of the galaxies NGC 253, IC 342, NGC 6946, and NGC 2146. These galaxies were chosen to span an order of magnitude in star formation rate and …


Almost Dark Galaxies: The Search For Optical Counterparts, Quinton O. Singer May 2017

Almost Dark Galaxies: The Search For Optical Counterparts, Quinton O. Singer

Macalester Journal of Physics and Astronomy

Presented in this paper are results from neutral hydrogen (HI) imaging and analysis of the "Almost Dark" galaxies AGC 219533, AGC 227982, and AGC 268363 using new, higher resolution observations from the Very Large Array (VLA). Selected from the ALFALFA survey, "Almost Dark" galaxies possess significant HI reservoirs but, when the HI data is compared to survey-depth ground-based optical imaging, their optical stellar counterparts have extremely low surface brightnesses. AGC 219533 is one such object. The other two sources, AGC 227982 and AGC 26833, were candidate dark galaxies, as no stellar counterpart was identified in initial ALFALFA optical matching, and …


A Direct Comparison Of Lyman-Alpha And Neutral Hydrogen Morphologies, Kathleen Fitzgibbon, John M. Cannon May 2017

A Direct Comparison Of Lyman-Alpha And Neutral Hydrogen Morphologies, Kathleen Fitzgibbon, John M. Cannon

Macalester Journal of Physics and Astronomy

The Lyman-Alpha Reference Sample (LARS) and its extension (eLARS) represent an exhaustive campaign to reverse-engineer galaxies. The main goal is to understand how \lya radiation is transported within galaxies: what fraction of it escapes, and what physical properties affect the \lya morphology and radiative transport (e.g., dust and gas content, metallicity, kinematics, properties of the producing and underlying stellar populations). Two galaxies from the sample, LARS02 and LARS09, were observed using the B and C configurations of the Very Large Array to examine the neutral hydrogen emission, which can be used to determine a galaxy's neutral hydrogen (HI) structure and …


Quantum Foundations With Astronomical Photons, Calvin Leung Jan 2017

Quantum Foundations With Astronomical Photons, Calvin Leung

HMC Senior Theses

Bell's inequalities impose an upper limit on correlations between measurements of two-photon states under the assumption that the photons play by a set of local rules rather than by quantum mechanics. Quantum theory and decades of experiments both violate this limit.

Recent theoretical work in quantum foundations has demonstrated that a local realist model can explain the non-local correlations observed in experimental tests of Bell's inequality if the underlying probability distribution of the local hidden variable depends on the choice of measurement basis, or ``setting choice''. By using setting choices determined by astrophysical events in the distant past, it is …


The Mid-Infrared Luminosity Evolution And Luminosity Function Of Quasars With Wise And Sdss, Jack Singal Nov 2016

The Mid-Infrared Luminosity Evolution And Luminosity Function Of Quasars With Wise And Sdss, Jack Singal

Physics Faculty Publications

We determine the 22 μm luminosity evolution and luminosity function for quasars from a data set of over 20,000 objects obtained by combining flux-limited Sloan Digital Sky Survey optical and Wide field Infrared Survey Explorer mid-infrared data. We apply methods developed in previous works to access the intrinsic population distributions non-parametrically, taking into account the truncations and correlations inherent in the data. We find that the population of quasars exhibits positive luminosity evolution with redshift in the mid-infrared, but with considerably less mid-infrared evolution than in the optical or radio bands. With the luminosity evolutions accounted for, we determine …


Robert Gowdy On Ripples In Space-Time, Dan Gaitanis Jan 2016

Robert Gowdy On Ripples In Space-Time, Dan Gaitanis

Auctus: The Journal of Undergraduate Research and Creative Scholarship

In February, a team of scientists announced that they had detected the sound of two black holes, some billion light years away, and that it confirmed the last part of Albert Einstein’s “Theory of Relativity.” It was a very faint sound, picked up by two detectors in the United States.


Dark Matter Halo Concentration And The Evolution Of Spiral Structure In N-Body, Barred Spiral Galaxies, Jazmin Esmeralda Berlanga Medina Dec 2015

Dark Matter Halo Concentration And The Evolution Of Spiral Structure In N-Body, Barred Spiral Galaxies, Jazmin Esmeralda Berlanga Medina

Graduate Theses and Dissertations

Motivated by the evidence of relationships between pitch angle (the tightness of spiral arm structure in the disk), P, and various indicators of central mass concentration, as well as the theoretical relationship between halo mass concentration and the density of visible matter in the central part of the galaxy, we look at a possible relationship between P and cvir (the virial concentration of the dark matter halo) in N-body simulations of barred, spiral galaxies. We also look at the evolution of pitch angle over time in higher temporal resolution than any data currently available in the literature. We find that …


The Role Of Cold Gas In Low-Level Supermassive Black Hole Activity, Erik D. Alfvin May 2015

The Role Of Cold Gas In Low-Level Supermassive Black Hole Activity, Erik D. Alfvin

Macalester Journal of Physics and Astronomy

The nature of the relationship between low-level supermassive black hole activity and galactic cold gas, if any, is currently unclear. It has been hypothesized that feedback may heat or expel gas and quench star formation; alternatively, central black holes may feed at higher rates (either directly or as a secondary effect from stellar winds) in gas-rich galaxies. We use a combination of radio data from the on-going ALFALFA survey and from the literature, along with archival X-ray flux measurements from the Chandra X-ray observatory, to investigate this potential relationship. We construct a sample of 136 late-type galaxies, with MB < −18 out to 50 Mpc, that have both HI masses and sensitive X-ray coverage. Of these, 76 host a nuclear X-ray source, a 56% detection fraction. There is a highly significant correlation between LX and Mstar with a slope of 1.5±0.2, and a tentative correlation (significant at the 2.5σ level) between LX and MHI. However, a joint fit to LX as a function of both Mstar and MHI finds no significant dependence on MHI, and similarly the residuals of LX − LX(Mstar) show no trend with MHI. We conclude that the galaxy-wide cold gas content in these spirals does not strongly influence their low-level supermassive black hole activity.


A Physically-Based Type Ii Supernova Feedback Model In Sph Simulations, Keita Todoroki Aug 2014

A Physically-Based Type Ii Supernova Feedback Model In Sph Simulations, Keita Todoroki

UNLV Theses, Dissertations, Professional Papers, and Capstones

We implement and test a core-collapse Type II SN feedback that is physically motivated and produces good agreement with observations in galaxy formation simulations. The model includes both kinetic and thermal feedback, allowing wind particles to receive a velocity kick that mimics galactic winds and distributes mass and metallicity to the interstellar and intergalactic medium. We also include a phenomenological stellar feedback to study a possible enhancement of the efficiency of the SN-II feedback by creating lower-density ambient gas medium of the stellar populations by distribution of thermal energy. Our SN-II model is unique in the sense that it computes …


Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner Jul 2014

Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner

Jay S Huebner

Providing the tools and know-how to apply the principles of astronomy first-hand, these 43 laboratory exercises each contain an introduction that clearly shows budding astronomers why the particular topic of that lab is of interest and relevant to astronomy. About one-third of the exercises are devoted solely to observation, and no mathematics is required beyond simple high school algebra and trigonometry.Organizes exercises into six major topics—sky, optics and spectroscopy, celestial mechanics, solar system, stellar properties, and exploration and other topics—providing clear outlines of what is involved in the exercise, its purpose, and what procedures and apparatus are to be used. …


Unmasking The Mysteries Of High-Mass X-Ray Binaries (Hmxbs): The Role Of The Electron Beam Ion Trap (Ebit), Carey L. Baxter, Greg Brown, Natalie Hell Aug 2012

Unmasking The Mysteries Of High-Mass X-Ray Binaries (Hmxbs): The Role Of The Electron Beam Ion Trap (Ebit), Carey L. Baxter, Greg Brown, Natalie Hell

Carey L Baxter

The Electron Beam Ion Trap (EBIT) uses a very narrow electron beam (~60μm) to excite and trap ions. X-ray emissions of the excited ions are then diffracted and analyzed. I studied specific spectral emission lines of ionized silicon. This data can be used as a point of reference for similar spectra measured by the satellite Chandra so that the Doppler shift due to wind around the accretion disks of High Mass X-ray Binaries (HMXBs) can be calculated. HMXBs are pairs of stars that are luminous in X-rays. They are composed of a donor star that gives up mass to an …


Essentials Of The Theory Of Abstraction - Lecture, Subhajit Kumar Ganguly Jan 2012

Essentials Of The Theory Of Abstraction - Lecture, Subhajit Kumar Ganguly

Subhajit Kumar Ganguly

In not favouring solutions or sets of solutions, the principle of zero-postulation drives away any unwanted incompleteness from the description of the world. It is the interactions between the possible exhaustive set of solutions that creates the impression pointedness or directiveness in the universe, leading to the formation of clusters, as discussed earlier. These interactions may be chaotic in nature, giving rise to attractor points where the directiveness inside any given system asymptotically seem to approach. It is this directiveness, in turn, inside a given system or in the universe as a whole, that is the cause of all known …


Analysis Of The 2008 Flare Of Markarian 421 Flare With Veritas, Casey Allard Jun 2011

Analysis Of The 2008 Flare Of Markarian 421 Flare With Veritas, Casey Allard

Physics

A theoretical light curve model is fit to an observed short term flare of Markarian (Mrk) 421 in the very high energy spectrum. The flare is characterized by its measured light curve from the Very Energetic Radiation Imaging telescope Array System (VERITAS). The flare we analyzed occurred in May 2008. We successfully fit a theoretical model to the Mrk 421 data light curve. The data appears to agree with the Wagner [1] and Salvati [2] models. These models appear to fit both broad and sharp flaring regions found in the measured light curve. Furthermore the Wagner model is used to …


The Efficacy Of Galaxy Shape Parameters In Photometric Redshift Estimation: A Neural Network Approach, Jack Singal, M. Shmakova, B. Gerke, R. L. Griffith, J. Lotz Apr 2011

The Efficacy Of Galaxy Shape Parameters In Photometric Redshift Estimation: A Neural Network Approach, Jack Singal, M. Shmakova, B. Gerke, R. L. Griffith, J. Lotz

Physics Faculty Publications

We present a determination of the effects of including galaxy morphological parameters in photometric redshift estimation with an artificial neural network method. Neural networks, which recognize patterns in the information content of data in an unbiased way, can be a useful estimator of the additional information contained in extra parameters, such as those describing morphology, if the input data are treated on an equal footing. We use imaging and five band photometric magnitudes from the All-wavelength Extended Groth Strip International Survey. It is shown that certain principal components of the morphology information are correlated with galaxy type. However, we find …


Condensation States And Landscaping With The Theory Of Abstraction, Subhajit Kumar Ganguly Jan 2011

Condensation States And Landscaping With The Theory Of Abstraction, Subhajit Kumar Ganguly

Subhajit Kumar Ganguly

The Abstraction theory is applied in landscaping. A collection of objects may be made to be vast or meager depending upon the scale of observations. This idea may be developed to unite the worlds of the great vastness of the universe and the minuteness of the sub-atomic realm. Keeping constant a scaling ratio for both worlds, these may actually be converted into two self-same representatives with respect to scaling. The Laws of Physical Transactions are made use of to study Bose-Einstein condensation. As the packing density of concerned constituents increase to a certain critical value, there may be evolution of …


Structure Formation Inside Triaxial Dark Matter Halos: Galactic Disks, Bulges, And Bars, Clayton Heller, Isaac Shlosman, Evangelie Athanassoula Dec 2007

Structure Formation Inside Triaxial Dark Matter Halos: Galactic Disks, Bulges, And Bars, Clayton Heller, Isaac Shlosman, Evangelie Athanassoula

Department of Physics and Astronomy Faculty Publications

We investigate formation and evolution of galactic disks immersed in assembling live DM halos. Models have been evolved from cosmological initial conditions and represent the collapse of an isolated density perturbation. The baryons include gas participating in star formation (SF) and stars with the energy feedback onto the ISM. We find that (1) the triaxial halo figure tumbling is insignificant and the angular momentum (J) is channeled into the internal circulation, while the baryonic collapse is stopped by the centrifugal barrier; (2) density response of the (disk) baryons is out of phase with DM, thus washing out the …