Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics

Condensed matter physics

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Anisotropic Thermodynamic And Transport Properties Of Single-Crystalline Cakfe4As4, W. R. Meier, T. Kong, U. S. Kaluarachchi, V. Taufour, N. H. Jo, G. Drachuck, A. E. Böhmer, S. M. Saunders, A. Sapkota, A. Kreyssig, M. A. Tanatar, R. Prozorov, A. I. Goldman, Fedor F. Balakirev, Alex Gurevich, S. L. Bud'ko, P. C. Canfield Jan 2016

Anisotropic Thermodynamic And Transport Properties Of Single-Crystalline Cakfe4As4, W. R. Meier, T. Kong, U. S. Kaluarachchi, V. Taufour, N. H. Jo, G. Drachuck, A. E. Böhmer, S. M. Saunders, A. Sapkota, A. Kreyssig, M. A. Tanatar, R. Prozorov, A. I. Goldman, Fedor F. Balakirev, Alex Gurevich, S. L. Bud'ko, P. C. Canfield

Physics Faculty Publications

Single-crystalline, single-phase CaKFe4As4 has been grown out of a high-temperature, quaternary melt. Temperature-dependent measurements of x-ray diffraction, anisotropic electrical resistivity, elastoresistivity, thermoelectric power, Hall effect, magnetization, and specific heat, combined with field-dependent measurements of electrical resistivity and field and pressure-dependent measurements of magnetization indicate that CaKFe4As4 is an ordered, stoichiometric, Fe-based superconductor with a superconducting critical temperature, Tc = 35.0 ± 0.2 K. Other than superconductivity, there is no indication of any other phase transition for 1.8K ≤ T ≤ 300 K. All of these thermodynamic and transport data reveal striking similarities to …


Design Of Superconducting Multi-Spoke Cavities For High Velocity Applications, C. S. Hopper, Jean R. Delayen Jan 2011

Design Of Superconducting Multi-Spoke Cavities For High Velocity Applications, C. S. Hopper, Jean R. Delayen

Physics Faculty Publications

Superconducting spoke cavities have been designed and tested for particle velocities up to β0 ~ 0.6 and are currently being designed for velocities up to β0 = 1. We present the electromagnetic designs for two-spoke cavities operating at 325 MHz for β0 = 0.82 and β0 = 1.


Higher Order Mode Properties Of Superconducting Two-Spoke Cavities, C. S. Hopper, Jean R. Delayen, R. G. Olave Jan 2011

Higher Order Mode Properties Of Superconducting Two-Spoke Cavities, C. S. Hopper, Jean R. Delayen, R. G. Olave

Physics Faculty Publications

Multi-Spoke cavities lack the cylindrical symmetry that many other cavity types have, which leads to a more complex Higher Order Mode (HOM) spectrum. In addition, spoke cavities offer a large velocity acceptance which means we must perform a detailed analysis of the particle velocity dependence for each mode's R/Q. We present here a study of the HOM properties of two-spoke cavities designed for high-velocity applications. Frequencies, R/Q and field profiles of HOMs have been calculated and are reported.