Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 40 of 40

Full-Text Articles in Physics

Bunch Length Measurements At The Cebaf Injector At 130 Kv, Sunil Pokharel, M. W. Bruker, J. M. Grames, A. S. Hofler, R. Kazimi, Geoffrey A. Krafft, S. Zhang Jan 2022

Bunch Length Measurements At The Cebaf Injector At 130 Kv, Sunil Pokharel, M. W. Bruker, J. M. Grames, A. S. Hofler, R. Kazimi, Geoffrey A. Krafft, S. Zhang

Physics Faculty Publications

In this work, we investigated the evolution in bunch length of beams through the CEBAF injector for low to high charge per bunch. Using the General Particle Tracer (GPT), we have simulated the beams through the beamline of the CEBAF injector and analyzed the beam to get the bunch lengths at the location of chopper. We performed these simulations with the existing injector using a 130 kV gun voltage. Finally, we describe measurements to validate these simulations. The measurements have been done using chopper scanning technique for two injector laser drive frequency modes: one with 500 MHz, and another with …


New Results At Jlab Describing Operating Lifetime Of Gaas Photo-Guns, M. Bruker, J. Grames, C. Hernández-García, M. Poelker, S. Zhang, V. Lizárraga-Rubio, C. Valerio-Lizárraga, Joshua T. Yoskowitz Jan 2022

New Results At Jlab Describing Operating Lifetime Of Gaas Photo-Guns, M. Bruker, J. Grames, C. Hernández-García, M. Poelker, S. Zhang, V. Lizárraga-Rubio, C. Valerio-Lizárraga, Joshua T. Yoskowitz

Physics Faculty Publications

Polarized electrons from GaAs photocathodes have been key to some of the highest-impact results of the Jefferson Lab science program over the past 30 years. During this time, various studies have given insight into improving the operational lifetime of these photocathodes in DC high-voltage photo-guns while using lasers with spatial Gaussian profiles of typically 0.5 mm to 1 mm FWHM, cathode voltages of 100 kV to 130 kV, and a wide range of beam currents up to multiple mA. In this contribution, we show recent experimental data from a 100 kV to 180 kV setup and describe our progress at …


Magnetic Field Penetration Technique To Study Field Shielding Of Multilayered Superconductors, Iresha Harshani Senevirathne, Alex Gurevich, Jean R. Delayen, A-M Valente-Feliciano Jan 2022

Magnetic Field Penetration Technique To Study Field Shielding Of Multilayered Superconductors, Iresha Harshani Senevirathne, Alex Gurevich, Jean R. Delayen, A-M Valente-Feliciano

Physics Faculty Publications

The SIS structure which consists of alternative thin layers of superconductors and insulators on a bulk niobium has been proposed to shield niobium cavity surface from high magnetic field and hence increase the accelerating gradient. The study of the behavior of multilayer superconductors in an external magnetic field is essential to optimize their SRF performance. In this work we report the development of a simple and efficient technique to measure penetration of magnetic field into bulk, thin film and multilayer superconductors. Experimental setup contains a small superconducting solenoid which can produce a parallel surface magnetic field up to 0.5 T …


Athena Detector Proposal — A Totally Hermetic Electron Nucleus Apparatus Proposed For Ip6 At The Electron-Ion Collider, J. Adam, L. Adamczyk, N. Agrawal, C. Aidala, W. Akers, M. Alekseev, M.M. Allen, F. Ameli, A. Angerami, P. Antonioli, N. J. Apadula, A. Aprahamian, W. Armstrong, M. Arratia, J. R. Arrington, A. Asaturyan, E. C. Aschenauer, K. Augsten, S. Aune, M. Żurek, Et Al. Jan 2022

Athena Detector Proposal — A Totally Hermetic Electron Nucleus Apparatus Proposed For Ip6 At The Electron-Ion Collider, J. Adam, L. Adamczyk, N. Agrawal, C. Aidala, W. Akers, M. Alekseev, M.M. Allen, F. Ameli, A. Angerami, P. Antonioli, N. J. Apadula, A. Aprahamian, W. Armstrong, M. Arratia, J. R. Arrington, A. Asaturyan, E. C. Aschenauer, K. Augsten, S. Aune, M. Żurek, Et Al.

Physics Faculty Publications

ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges.


197 Mhz Waveguide Loaded Crabbing Cavity Design For The Electron-Ion Collider, Subashini De Silva, Jean Delayen, J. Guo, R. A. Rimmer, Z. Li, B. P. Xiao Jan 2022

197 Mhz Waveguide Loaded Crabbing Cavity Design For The Electron-Ion Collider, Subashini De Silva, Jean Delayen, J. Guo, R. A. Rimmer, Z. Li, B. P. Xiao

Physics Faculty Publications

The Elec­tron-Ion Col­lider will re­quire crab­bing sys­tems at both hadron and elec­tron stor­age rings in order to reach the de­sired lu­mi­nos­ity goal. The 197 MHz crab cav­ity sys­tem is one of the crit­i­cal rf sys­tems of the collider. The crab cav­ity, based on the rf-di­pole de­sign, explores the op­tion of wave­guide load damp­ing to sup­press the higher order modes and meet the tight im­ped­ance spec­i­fi­ca­tions. The cav­ity is de­signed with com­pact dog-bone wave­guides with tran­si­tions to rec­tan­gu­lar wave-guides and wave­guide loads. This paper pre­sents the com­pact 197 MHz crab cav­ity de­sign with wave­guide damp­ing and other an­cil­lar­ies.


Studying The Conditions For Magnetic Reconnection In Solar Flares With And Without Precursor Flares, Seth H. Garland, Daniel J. Emmons, Robert D. Loper Jan 2022

Studying The Conditions For Magnetic Reconnection In Solar Flares With And Without Precursor Flares, Seth H. Garland, Daniel J. Emmons, Robert D. Loper

Faculty Publications

Forecasting of solar flares remains a challenge due to the limited understanding of the triggering mechanisms associated with magnetic reconnection, the primary physical phenomenon connected to these events. Studies have indicated that changes to the photospheric magnetic fields associated with magnetic reconnection – particularly in relation to the field helicity – occur during solar flare events. This study utilized data from the Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager (HMI) and SpaceWeather HMI Active Region Patches (SHARPs) to analyze full vector-field component data of the photospheric magnetic field during solar flare events within a near decade long HMI dataset. …


Beamline For E-Beam Processing At Uitf, G. Ciovati, C. Bott, S. Gregory, F. Hannon, Xi Li, M. Mccaughan, R. Pearce, M. Poelker, H. Vennekate Jan 2022

Beamline For E-Beam Processing At Uitf, G. Ciovati, C. Bott, S. Gregory, F. Hannon, Xi Li, M. Mccaughan, R. Pearce, M. Poelker, H. Vennekate

Electrical & Computer Engineering Faculty Publications

No abstract provided.


Real-Time Cavity Fault Prediction In Cebaf Using Deep Learning, Md. M. Rahman, K. Iftekharuddin, A. Carptenter, T. Mcguckin, C. Tennant, L. Vidyaratne, Sandra Biedron (Ed.), Evgenya Simakov (Ed.), Stephen Milton (Ed.), Petr M. Anisimov (Ed.), Volker R.W. Schaa (Ed.) Jan 2022

Real-Time Cavity Fault Prediction In Cebaf Using Deep Learning, Md. M. Rahman, K. Iftekharuddin, A. Carptenter, T. Mcguckin, C. Tennant, L. Vidyaratne, Sandra Biedron (Ed.), Evgenya Simakov (Ed.), Stephen Milton (Ed.), Petr M. Anisimov (Ed.), Volker R.W. Schaa (Ed.)

Electrical & Computer Engineering Faculty Publications

Data-driven prediction of future faults is a major research area for many industrial applications. In this work, we present a new procedure of real-time fault prediction for superconducting radio-frequency (SRF) cavities at the Continuous Electron Beam Accelerator Facility (CEBAF) using deep learning. CEBAF has been afflicted by frequent downtime caused by SRF cavity faults. We perform fault prediction using pre-fault RF signals from C100-type cryomodules. Using the pre-fault signal information, the new algorithm predicts the type of cavity fault before the actual onset. The early prediction may enable potential mitigation strategies to prevent the fault. In our work, we apply …


Deep Learning Based Superconducting Radio-Frequency Cavity Fault Classification At Jefferson Laboratory, Lasitha Vidyaratne, Adam Carpenter, Tom Powers, Chris Tennant, Khan M. Iftekharuddin, Md. Monibor Rahman, Anna S. Shabalina Jan 2022

Deep Learning Based Superconducting Radio-Frequency Cavity Fault Classification At Jefferson Laboratory, Lasitha Vidyaratne, Adam Carpenter, Tom Powers, Chris Tennant, Khan M. Iftekharuddin, Md. Monibor Rahman, Anna S. Shabalina

Electrical & Computer Engineering Faculty Publications

This work investigates the efficacy of deep learning (DL) for classifying C100 superconducting radio-frequency (SRF) cavity faults in the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. CEBAF is a large, high-power continuous wave recirculating linac that utilizes 418 SRF cavities to accelerate electrons up to 12 GeV. Recent upgrades to CEBAF include installation of 11 new cryomodules (88 cavities) equipped with a low-level RF system that records RF time-series data from each cavity at the onset of an RF failure. Typically, subject matter experts (SME) analyze this data to determine the fault type and identify the cavity of …


Nb₃Sn Coating Of A 2.6 Ghz Srf Cavity By Sputter Deposition Technique, M. S. Shakel, Wei Cao, H. Elsayed-Ali, G. V. Eremeev, U. Pudasaini, A. M. Valente-Feliciano Jan 2022

Nb₃Sn Coating Of A 2.6 Ghz Srf Cavity By Sputter Deposition Technique, M. S. Shakel, Wei Cao, H. Elsayed-Ali, G. V. Eremeev, U. Pudasaini, A. M. Valente-Feliciano

Electrical & Computer Engineering Faculty Publications

Nb₃Sn is of interest as a coating for SRF cavities due to its higher transition temperature Tc ~18.3 K and superheating field Hsh ~400 mT, both are twice that of Nb. Nb₃Sn coated cavities can achieve high-quality factors at 4 K and can replace the bulk Nb cavities operated at 2 K. A cylindrical magnetron sputtering system was built, commissioned, and used to deposit Nb₃Sn on the inner surface of a 2.6 GHz single-cell Nb cavity. With two identical cylindrical magnetrons, this system can coat a cavity with high symmetry and uniform thickness. Using Nb-Sn multilayer sequential sputtering followed by …