Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

2003

Institution
Keyword
Publication
Publication Type

Articles 31 - 51 of 51

Full-Text Articles in Physics

Index-Matched Boundary Techniques For The Elimination Of Acoustical Resonances, Jack H. Parker, Bradley D. Duncan Feb 2003

Index-Matched Boundary Techniques For The Elimination Of Acoustical Resonances, Jack H. Parker, Bradley D. Duncan

Electro-Optics and Photonics Faculty Publications

We extend the principle of optical index of refraction to apply the concept of acoustical index for transverse acoustical wave propagation in strings. The relationship between acoustical index and mass density of the acoustic material is developed. With this theoretical link established, classic index-matching techniques are explored at acoustical boundaries. Proper selection of boundary interface segments leads to the elimination of resonant vibrationalmodes that occur in rigidly supported strings, while maintaining the nonresonant vibration response.


An Analysis Of The Melt Casting Of Metallic Fuel Pins, Xiaolong Wu, Randy Clarksean, Yitung Chen Yitung.Chen@Unlv.Edu, Darrell Pepper, Mitchell K. Meyer Jan 2003

An Analysis Of The Melt Casting Of Metallic Fuel Pins, Xiaolong Wu, Randy Clarksean, Yitung Chen Yitung.Chen@Unlv.Edu, Darrell Pepper, Mitchell K. Meyer

Fuels Campaign (TRP)

• Background

– Casting Volatile Actinides

– Need to Contain Americium

– Overview of Project

• Fuel Rod Model

– Physical System

– Governing Equations

• Preliminary Modeling Results

– Mold Materials

– Injection Casting Velocity


Absolute Orientation-Dependent Anisotropic Tin(111) Island Step Energies And Stiffnesses From Shape Fluctuation Analyses, S. Kodambaka, S. V. Khare, V. Petrova, Duane D. Johnson, I. Petrov, J. E. Greene Jan 2003

Absolute Orientation-Dependent Anisotropic Tin(111) Island Step Energies And Stiffnesses From Shape Fluctuation Analyses, S. Kodambaka, S. V. Khare, V. Petrova, Duane D. Johnson, I. Petrov, J. E. Greene

Duane D. Johnson

In situ high-temperature (1165–1248 K) scanning-tunneling microscopy was used to measure temporal fluctuations about the anisotropic equilibrium shape of two-dimensional TiN(111) adatom and vacancy islands on atomically smooth TiN(111) terraces. The equilibrium island shape was found to be a truncated hexagon bounded by alternating 〈110〉 steps, which form [100] and [110] nanofacets with the terrace. Relative step energies β as a function of step orientation φ were obtained from the inverse Legendre transformation of the equilibrium island shape to within an orientation-independent scale factor λ, the equilibrium chemical potential of the island per unit TiN area. We find that for …


Ultrafine Nife2o4 Powder Fabricated From Reverse Microemulsion Process, Jiye Fang, Narayan Shama, Le Duc Tung, Eun Young Shin, Charles J. O'Connor, Kevin L. Stokes, Gabriel Caruntu, John B. Wiley, Leonard Spinu, Jinke Tang Jan 2003

Ultrafine Nife2o4 Powder Fabricated From Reverse Microemulsion Process, Jiye Fang, Narayan Shama, Le Duc Tung, Eun Young Shin, Charles J. O'Connor, Kevin L. Stokes, Gabriel Caruntu, John B. Wiley, Leonard Spinu, Jinke Tang

Physics Faculty Publications

NiFe2O4 ultrafine powder with high crystallinity has been prepared through a reverse microemulsion route. The composition in starting solution was optimized, and the resulting NiFe2O4 was formed at temperature of around 550–600 °C, which is much lower than that observed from the solid-state reaction. Magnetic investigation indicates that samples are soft-magnetic materials with low coercivity and with the saturation magnetization close to the bulk value of Ni ferrite.


Self-Assembly Of Fept Nanoparticles Into Nanorings, Weilie L. Zhou, Jibao He, Jiye Fang, Tuyet-Anh Huynh, Trevor J. Kennedy, Kevin L. Stokes, Charles J. O'Connor Jan 2003

Self-Assembly Of Fept Nanoparticles Into Nanorings, Weilie L. Zhou, Jibao He, Jiye Fang, Tuyet-Anh Huynh, Trevor J. Kennedy, Kevin L. Stokes, Charles J. O'Connor

Physics Faculty Publications

The application of nanoparticles as quantum dots in nanoelectronics demands their arrangement in ordered arrays. Shape controlled self-assembly is a challenge due to the difficulties of obtaining proper self-assembling parameters, such as solvent concentration, organic ligands, and nanoparticle size. In this article, hard magnetic FePt nanoparticles were synthesized using a combination approach of reduction and thermal decomposition. The nanoparticles are about 4.5 nm and appeared as truncated octahedral enclosed by the

{100} and {111}

crystal facets of fcc structure. The nanoparticles are of hexagonal close packing and orient randomly in the self-assembly nanoarrays. By diluting the solution for large-area self-assembly, …


Origin Of Particle Clustering In A Simulated Polymer Nanocomposite And Its Impact On Rheology, Francis W. Starr, J. F. Douglas, S. C. Glotzer Jan 2003

Origin Of Particle Clustering In A Simulated Polymer Nanocomposite And Its Impact On Rheology, Francis W. Starr, J. F. Douglas, S. C. Glotzer

Francis Starr

Many nanoparticles have short-range interactions relative to their size, and these interactions tend to be ‘‘patchy’’ since the interatomic spacing is comparable to the nanoparticle size. For a dispersion of such particles, it is not a priori obvious what mechanism will control the clustering of the nanoparticles, and how the clustering will be affected by tuning various control parameters. To gain insight into these questions, we perform molecular dynamics simulations of polyhedral nanoparticles in a dense bead–spring polymer melt under both quiescent and steady shear conditions. We explore the mechanism that controls nanoparticle clustering and find that the crossover from …


Three-Dimensional Landau Theory For Multivariant Stress-Induced Martensitic Phase Transformations. Iii. Alternative Potentials, Critical Nuclei, Kink Solutions, And Dislocation Theory, Valery I. Levitas, Dean L. Preston, Dong Wook Lee Jan 2003

Three-Dimensional Landau Theory For Multivariant Stress-Induced Martensitic Phase Transformations. Iii. Alternative Potentials, Critical Nuclei, Kink Solutions, And Dislocation Theory, Valery I. Levitas, Dean L. Preston, Dong Wook Lee

Valery I. Levitas

In part III of this paper, alternative Landau potentials for the description of stress-and temperature-induced martensitic phase transformations under arbitrary three-dimensional loading are obtained. These alternative potentials include a sixth-degree (2-4-6) polynomial in Cartesian order parameters and a potential in hyperspherical order parameters. Each satisfies all conditions for the correct description of experiments. The unique features of the potentials are pointed out and a detailed comparison of the potentials is made for NiAl alloy. Analytic solutions of the one-dimensional time-independent Ginzburg-Landau equations for the 2-3-4 and 2-4-6 potentials for a constant-stress tensor and invariant-plane strain are obtained and compared. Solutions …


Nuclear Criticality, Shielding, And Thermal Analyses Of Separations Processes For The Transmutation Fuel Cycle, William Culbreth, Denis Beller Jan 2003

Nuclear Criticality, Shielding, And Thermal Analyses Of Separations Processes For The Transmutation Fuel Cycle, William Culbreth, Denis Beller

Separations Campaign (TRP)

The first step in any transmutation strategy is the separation of radionuclides in used nuclear fuel. The current separation strategy supporting the Advanced Fuel Cycle Initiative (AFCI) program is based on the use of a solvent extraction separation process to separate the actinides, fission products, and uranium from used commercial nuclear fuel, and on the use of pyrochemical separation technologies to process used transmuter fuels. To separate the fission products and transuranic elements from the uranium in used fuel, the national program is developing a new solvent extraction process, the Uranium Extraction Plus, or UREX+, process, based on the traditional …


Neutron Multiplicity Measurements Of Target/Blanket Materials, Carter D. Hull, Denis Beller Jan 2003

Neutron Multiplicity Measurements Of Target/Blanket Materials, Carter D. Hull, Denis Beller

Transmutation Sciences Physics (TRP)

To optimize the performance of accelerator driven transmutation systems (ADS), engineers will need to design the system to operate with a neutron multiplication factor just below that of a critical, or self-sustaining, system. This design criteria requires particle transport codes that instill the highest level of confidence with minimal uncertainty, because the larger the uncertainties in the codes, the larger the safety margin required in the design and the lower the efficiency of the ADS transmuter. For current design efforts, the MCNPX code is used to determine neutron production and transport for spallation neutron systems.

While providing a very useful …


Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry Jan 2003

Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry

Transmutation Sciences Materials (TRP)

Materials for transmuter systems must be able to tolerate high neutron fluxes, great temperatures, and chemical corrosion. For lead bismuth eutectic (LBE) systems, there is an additional challenge in that the corrosive behaviors of materials in LBE are not well understood. Most of the available information on LBE systems has come from the Russians, who have over 80 reactor-years experience with LBE coolant in their Alpha-class submarine reactors. The Russians found that the presence of small amounts of oxygen (on the order of parts per million) in the LBE significantly reduced corrosion. However, a fundamental understanding and verification of its …


Surface Studies Of Corrosion Of Stainless Steel By Lead Bismuth Eutectic, Daniel Koury, Brian D. Hosterman, John Farley, Dale L. Perry, D. Parsons, J. Manzerova, Allen L. Johnson Jan 2003

Surface Studies Of Corrosion Of Stainless Steel By Lead Bismuth Eutectic, Daniel Koury, Brian D. Hosterman, John Farley, Dale L. Perry, D. Parsons, J. Manzerova, Allen L. Johnson

Transmutation Sciences Materials (TRP)

Why is Lead Bismuth Eutectic Important?

• Changing national security stances have led to reexamination of nuclear waste reprocessing

• Dangerous actinides can be separated and

• Transmuted into safer products, creating a waste form dangerous for only hundreds of years, in addition to the production (up to 1/3 of the original fission energy) of useful energy

• Non-moderating coolants or spallation targets for production of fast neutrons is required for transmutation

• Russian experience with LBE coolants in their nuclear submarine fleet makes LBE an attractive possible transmutation coolant technology

• Corrosion of steel by LBE is an important …


Radiation Transport Modeling Using Parallel Computational Techniques, William Culbreth Jan 2003

Radiation Transport Modeling Using Parallel Computational Techniques, William Culbreth

Reactor Campaign (TRP)

The Advanced Fuel Cycle Initiative (AFCI) program will rely on the use of accurate calculations and simulations of criticality and shielding for the separation process of the longlived isotopes that present a significant safety hazard in commercial spent fuel. To help design and verify the safety of the separation process, the neutronics code MCNPX will be used to model the distribution of neutron flux within the fuel blanket and to determine the neutron multiplication, keff. However, the cross section libraries and computational methods used by MCNPX at these neutron energies still have some uncertainty and will require validation. …


Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrell Pepper, Randy Clarksean Jan 2003

Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrell Pepper, Randy Clarksean

Fuels Campaign (TRP)

The goal of this project is to investigate the casting processes for metallic fuels to help design a process that minimizes the loss of the volatile actinide elements from the fuel.

The research effort centers on the development of advanced numerical models to assess conditions that significantly impact the transport of volatile actinides during the melt casting process and represents a joint effort between researchers at the University of Nevada, Las Vegas (UNLV) and Argonne National Laboratory (ANL).


University Of Nevada, Las Vegas Transmutation Research Program Annual Report 2002, Anthony Hechanova, Elizabeth Johnson, Gary Cerefice Jan 2003

University Of Nevada, Las Vegas Transmutation Research Program Annual Report 2002, Anthony Hechanova, Elizabeth Johnson, Gary Cerefice

Transmutation Research Program Reports (TRP)

The UNLV Transmutation Research Program consists of four components: Program Support, Research Infrastructure Augmentation, International Collaboration, and Student Research.

In the first year of the program, the student research component was supported by the infrastructure augmentation and the program support components. In the second year of the program, the fourth leg of the support system, international collaborations, was added to the research support system.


Digital Image Processing, Russell C. Hardie, Majeed M. Hayat Jan 2003

Digital Image Processing, Russell C. Hardie, Majeed M. Hayat

Electrical and Computer Engineering Faculty Publications

In recent years, digital images and digital image processing have become part of everyday life. This growth has been primarily fueled by advances in digital computers and the advent and growth of the Internet. Furthermore, commercially available digital cameras, scanners, and other equipment for acquiring, storing, and displaying digital imagery have become very inexpensive and increasingly powerful. An excellent treatment of digital images and digital image processing can be found in Ref. [1]. A digital image is simply a two-dimensional array of finite-precision numerical values called picture elements (or pixels). Thus a digital image is a spatially discrete (or discrete-space) …


Chemical Bonding In Hard And Elastic Amorphous Carbon-Nitride Films, W. Jason Gammon Jan 2003

Chemical Bonding In Hard And Elastic Amorphous Carbon-Nitride Films, W. Jason Gammon

Dissertations, Theses, and Masters Projects

In this study, the chemical bonding in hard and elastic amorphous carbon nitride (a-CNx) films is investigated with x-ray photoelectron spectroscopy (XPS) and 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. The films were deposited by DC Magnetron sputtering in a pure nitrogen discharge on Si(001) substrates at 300--400??C. Nanoindentation measurements reveal an elastic modulus of ∼50 GPa and a hardness of ∼5 GPa, thus confirming our films are highly elastic but resist plastic deformation.;Our 13C NMR study demonstrates the absence of sp 3-bonded carbon in this material. Collectively, our N(1s) XPS, 13C NMR, and 15N NMR data suggest …


How To Establish Successful Cooperative Student Learning Centers For Stem Courses, Ronald James Bieniek, Douglas R. Carroll, Cesar Mendoza, Oran Allan Pringle, Ekkehard Sinn, Kai-Tak Wan, Donald C. Wunsch Jan 2003

How To Establish Successful Cooperative Student Learning Centers For Stem Courses, Ronald James Bieniek, Douglas R. Carroll, Cesar Mendoza, Oran Allan Pringle, Ekkehard Sinn, Kai-Tak Wan, Donald C. Wunsch

Physics Faculty Research & Creative Works

Students learn more if they are actively involved in the learning process, particularly in a cooperative manner. Several UMR faculty have operated course-based learning centers (LCs) as part of the campus-wide Learning Enhancement Across Disciplines (LEAD) Program of student learning assistance and enhancement. LCs are designed to assist large numbers of students in a cost- and time-efficient manner that promotes student engagement without requiring undue amounts of faculty time. Course instructors spend time in the open learning environment of the LC, in lieu of office hours, guiding students to master course material and skills in their evolution from novice to …


Simple Plane Wave Implementation For Photonic Crystal Calculations, Shangping Guo, Sacharia Albin Jan 2003

Simple Plane Wave Implementation For Photonic Crystal Calculations, Shangping Guo, Sacharia Albin

Electrical & Computer Engineering Faculty Publications

A simple implementation of plane wave method is presented for modeling photonic crystals with arbitrary shaped ‘atoms’. The Fourier transform for a single ‘atom’ is first calculated either by analytical Fourier transform or numerical FFT, then the shift property is used to obtain the Fourier transform for any arbitrary supercell consisting of a finite number of ‘atoms’. To ensure accurate results, generally, two iterating processes including the plane wave iteration and grid resolution iteration must converge. Analysis shows that using analytical Fourier transform when available can improve accuracy and avoid the grid resolution iteration. It converges to the accurate results …


Study Of A Growth Instability Of Γ-In[Sub 2]Se[Sub 3], C. Amory, J. C. Bernede, S. Marsillac Jan 2003

Study Of A Growth Instability Of Γ-In[Sub 2]Se[Sub 3], C. Amory, J. C. Bernede, S. Marsillac

Electrical & Computer Engineering Faculty Publications

γ-In[sub 2]Se[sub 3] thin film are deposited for various substrate temperatures in the range of 523–673 K. This study shows that at 573 and 673 K the thin films are well crystallized with grains aligned along the c axis. Between these temperatures, a domain of instability appears where the γ-In[sub 2]Se[sub 3] thin films have a randomly orientation and the c-lattice parameter increases. The presence of the metastable phase κ-In[sub 2]Se[sub 3], during the growth, can explain the existence of this domain of instability. The insertion of Zn during the preparation process allows us to stabilize the phase κ at …


Electron Bernstein Wave-X-O Mode Conversion And Electron Cyclotron Emission In Mast, Josef Preinhaelter, Pavol Pavlo, Vladimir Shevchenko, Martin Valovic, Linda L. Vahala, George Vahala Jan 2003

Electron Bernstein Wave-X-O Mode Conversion And Electron Cyclotron Emission In Mast, Josef Preinhaelter, Pavol Pavlo, Vladimir Shevchenko, Martin Valovic, Linda L. Vahala, George Vahala

Electrical & Computer Engineering Faculty Publications

Electron cyclotron emission (ECE) from overdense plasmas can only occur due to electron Bernstein waves (EBW) mode converting near the upper hybrid region to an electromagnetic wave. Experimental data of ECE observations on MAST are studied and compared with EBW-X-O mode conversion modeling results.


Compact Supercell Method Based On Opposite Parity For Bragg Fibers, Wang Zhi, Ren Guobin, Lou Shuquin, Liang Weijun, Shangping Guo Jan 2003

Compact Supercell Method Based On Opposite Parity For Bragg Fibers, Wang Zhi, Ren Guobin, Lou Shuquin, Liang Weijun, Shangping Guo

Electrical & Computer Engineering Faculty Publications

The supercell- based orthonormal basis method is proposed to investigate the modal properties of the Bragg fibers. A square lattice is constructed by the whole Bragg fiber which is considered a supercell, and the periodical dielectric structure of the square lattice is decomposed using periodic functions (cosine). The modal electric field is expanded as the sum of the orthonormal set of Hermite-Gaussian basis functions based on the opposite parity of the transverse electric field. The propagation characteristics of Bragg fibers can be obtained after recasting the wave equation into an eigenvalue system. This method is implemented with very high efficiency …