Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physics

Neutrino-Tagged Jets At The Electron Ion Collider, Miguel Arratia, Zhong-Bo Kang, Sebouh J. Paul, Alexei Prokudin, Felix Ringer, Fanyi Zhao Jan 2023

Neutrino-Tagged Jets At The Electron Ion Collider, Miguel Arratia, Zhong-Bo Kang, Sebouh J. Paul, Alexei Prokudin, Felix Ringer, Fanyi Zhao

Physics Faculty Publications

We explore the potential of jet observables in charged-current deep inelastic scattering events at the future Electron-Ion Collider. Tagging jets with a recoiling neutrino, which can be identified by the event’s missing transverse momentum, will allow for flavor-sensitive measurements of transverse momentum dependent parton distribution functions. We present the first predictions for transverse-spin asymmetries in azimuthal neutrino-jet correlations and hadron-in-jet measurements. We study the kinematic reach and the precision of these measurements and explore their feasibility using parametrized detector simulations. We conclude that jet production in charged-current deep inelastic scattering, while challenging in terms of luminosity requirements, will complement the …


High-Luminosity Large Hadron Collider (Hl-Lhc): Technical Design Report, O. Aberle, C. Adorisio, A. Adraktas, M. Ady, J. Albertone, L. Alberty, M. Alcaide Leon, A. Alekou, D. Alesini, B. Almeida Ferreira, P. Alvarez-Lopez, G. Ambrosio, P. Andreu Munoz, M. Anerella, D. Angal-Kalinin, F. Antoniou, G. Apollinari, A. Apollonio, R. Appleby, I. Béjar Alonso, Jean Delayen, I. Zurbano Fernandez, Et Al., I. Béjar Alonso (Ed.), O. Brüning (Ed.), P. Fessia (Ed.), M. Lamont (Ed.), L. Rossi (Ed.), L. Tavian (Ed.), M. Zerlauth (Ed.) Jan 2020

High-Luminosity Large Hadron Collider (Hl-Lhc): Technical Design Report, O. Aberle, C. Adorisio, A. Adraktas, M. Ady, J. Albertone, L. Alberty, M. Alcaide Leon, A. Alekou, D. Alesini, B. Almeida Ferreira, P. Alvarez-Lopez, G. Ambrosio, P. Andreu Munoz, M. Anerella, D. Angal-Kalinin, F. Antoniou, G. Apollinari, A. Apollonio, R. Appleby, I. Béjar Alonso, Jean Delayen, I. Zurbano Fernandez, Et Al., I. Béjar Alonso (Ed.), O. Brüning (Ed.), P. Fessia (Ed.), M. Lamont (Ed.), L. Rossi (Ed.), L. Tavian (Ed.), M. Zerlauth (Ed.)

Physics Faculty Publications

The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 9000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its instantaneous luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total number of collisions) by a factor ten. …


Overview Of Srf Deflecting And Crabbing Cavities, Subashini De Silva Jan 2019

Overview Of Srf Deflecting And Crabbing Cavities, Subashini De Silva

Physics Faculty Publications

Developments over the past few years on novel superconducting deflecting and crabbing cavities have introduced advanced rf geometries with improved performance, in comparison to the typical squashed elliptical cavities operating in TM110 type mode. These new structures are compact geometries operating in either TEM type or TE11-like mode. One of the key applications of such cavities is the use of crabbing systems for circular colliders in increasing the luminosity. Crabbing systems are an essential component in future colliders with intense beams and proposed electron-ion colliders. High luminosity upgrade of LHC is planned to implement crabbing systems at two interaction points. …


The Us Electron Ion Collider Accelerator Designs, A. Seryi, S.V. Benson, S.A. Bogacz, P.D. Brindza, M.W. Brucker, A. Camsonne, E. Daly, P.V. Degtiarenko, Y.S. Derbenev, M. Diefenthaler, J. Dolbeck, R. Ent, R. Fair, D. Fazenbaker, Y. Furletova, B.R. Gamage, D. Gaskell, R.L. Geng, P. Ghoshal, R.C. York, Et Al. Jan 2019

The Us Electron Ion Collider Accelerator Designs, A. Seryi, S.V. Benson, S.A. Bogacz, P.D. Brindza, M.W. Brucker, A. Camsonne, E. Daly, P.V. Degtiarenko, Y.S. Derbenev, M. Diefenthaler, J. Dolbeck, R. Ent, R. Fair, D. Fazenbaker, Y. Furletova, B.R. Gamage, D. Gaskell, R.L. Geng, P. Ghoshal, R.C. York, Et Al.

Physics Faculty Publications

With the completion of the National Academies of Sciences Assessment of a US Electron-Ion Collider, the prospects for construction of such a facility have taken a step forward. This paper provides an overview of the two site-specific EIC designs: JLEIC (Jefferson Lab) and eRHIC (BNL) as well as brief overview of ongoing EIC R&D.


Design Of A Proof-Of-Principle Crabbing Cavity For The Jefferson Lab Electron-Ion Collider, Hyekyoung Park, Subashini U. De Silva, Salvador I. Sosa Guitron, Jean R. Delayen Jan 2019

Design Of A Proof-Of-Principle Crabbing Cavity For The Jefferson Lab Electron-Ion Collider, Hyekyoung Park, Subashini U. De Silva, Salvador I. Sosa Guitron, Jean R. Delayen

Physics Faculty Publications

The Jefferson Lab design for an electron-ion collider (JLEIC) requires crabbing of the electron and ion beams in order to achieve the design luminosity. A number of options for the crabbing cavities have been explored, and the one which has been selected for the proof-of-principle is a 952 MHz, 2-cell rf-dipole (RFD) cavity. This paper summarizes the electromagnetic design of the cavity and its HOM characteristics.


Modeling Local Crabbing Dynamics In The Jleic Ion Collider Ring, Salvador Sosa Guitron, Vasiliy Morozov, Jean Delayen May 2017

Modeling Local Crabbing Dynamics In The Jleic Ion Collider Ring, Salvador Sosa Guitron, Vasiliy Morozov, Jean Delayen

Physics Faculty Publications

The Jefferson Lab Electron-Ion Collider (JLEIC) design considers a 50 mrad crossing angle at the Interaction Point. Without appropriate compensation, this could geometrically reduce the luminosity by an order of magnitude. A local crabbing scheme is implemented to avoid the luminosity loss: crab cavities are placed at both sides of the interaction region to restore a head-on collision scenario. In this contribution, we report on the implementation of a local crabbing scheme in the JLEIC ion ring. The effects of this correction scheme on the stability of proton bunches are analyzed using the particle tracking software elegant.


Crabbing System For An Electron-Ion Collider, Alejandro Castilla Apr 2017

Crabbing System For An Electron-Ion Collider, Alejandro Castilla

Physics Theses & Dissertations

As high energy and nuclear physicists continue to push further the boundaries of knowledge using colliders, there is an imperative need, not only to increase the colliding beams’ energies, but also to improve the accuracy of the experiments, and to collect a large quantity of events with good statistical sensitivity. To achieve the latter, it is necessary to collect more data by increasing the rate at which these pro- cesses are being produced and detected in the machine. This rate of events depends directly on the machine’s luminosity. The luminosity itself is proportional to the frequency at which the beams …


Correction To Luminosity Measurement For The Pixel Luminosity Telescope At Cms, Krishna Thapa Dec 2016

Correction To Luminosity Measurement For The Pixel Luminosity Telescope At Cms, Krishna Thapa

Masters Theses

The search for and detailed study of new particles and forces with the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) of CERN is fundamentally dependent on the precise measurement of the rate at which proton-proton collisions produce any particles, the so-called luminosity. Therefore, a new detector, the Pixel Luminosity Telescope (PLT), dedicated to measure the luminosity at high precision was added to the CMS experiment in 2015. It measures the inclusive charged particle production from each collision of proton bunches in the LHC. Additional charged particles which are observed by the instrument but produced from sources …


Gpu Accelerated Long-Term Simulations Of Beam-Beam Effects In Colliders, B. Terzić, V. Morozov, Y. Roblin, F. Lin, H. Zhang, M. Aturban, D. Ranjan, M. Zubair Jan 2014

Gpu Accelerated Long-Term Simulations Of Beam-Beam Effects In Colliders, B. Terzić, V. Morozov, Y. Roblin, F. Lin, H. Zhang, M. Aturban, D. Ranjan, M. Zubair

Computer Science Faculty Publications

We present an update on the development of the new code for long-term simulation of beam-beam effects in particle colliders. The underlying physical model relies on a matrix-based arbitrary-order particle tracking (including a symplectic option) for beam transport and the generalized Bassetti-Erskine approximation for beam-beam interaction. The computations are accelerated through a parallel implementation on a hybrid GPU/CPU platform. With the new code, previously computationally prohibitive long-term simulations become tractable. The new code will be used to model the proposed Medium-energy Electron-Ion Collider (MEIC) at Jefferson Lab.


Large-Angle Beamstrahlung: Simulation And Diagnostics, Ryan Stephen Gillard Jan 2014

Large-Angle Beamstrahlung: Simulation And Diagnostics, Ryan Stephen Gillard

Wayne State University Dissertations

LARGE-ANGLE BEAMSTRAHLUNG: SIMULATION AND DIAGNOSTICS

by

RYAN S. GILLARD

May 2014

Advisor: Dr. Giovanni Bonvicini

Major: Physics

Degree: Doctor of Philosophy

Luminosity is paramount in high energy physics research, therefore it is critical to optimize it. Particle beams are complex and orbit in a complicated fashion therefore they don't always collide as intended thus reducing our chance of discovery. Simulations and calculations of the beam-beam radiation or beamstrahlung can provide crucial insight into the collision geometry. Combined with an optics box that can collect and analyze this radiation, this could be an extremely valuable tool leading to correction of the …