Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

III-V semiconductors

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Physics

Atomic Hydrogen Cleaning Of Inp(100) For Preparation Of A Negative Electron Affinity Photocathode, K. A. Elamrawi, M. A. Hafez, H. E. Elsayed-Ali Jan 1998

Atomic Hydrogen Cleaning Of Inp(100) For Preparation Of A Negative Electron Affinity Photocathode, K. A. Elamrawi, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Atomic hydrogen cleaning is used to clean InP(100) negative electron affinity photocathodes. Reflection high-energy electron diffraction patterns of reconstructed, phosphorus-stabilized, InP(100) surfaces are obtained after cleaning at ∼400 °C. These surfaces produce high quantum efficiency photocathodes (∼8.5%), in response to 632.8 nm light. Without atomic hydrogen cleaning, activation of InP to negative electron affinity requires heating to ∼530 °C. At this high temperature, phosphorus evaporates preferentially and a rough surface is obtained. These surfaces produce low quantum efficiency photocathodes (∼0.1%). The use of reflection high-energy electron diffraction to measure the thickness of the deposited cesium layer during activation by correlating …


Influence Of Copper Doping On The Performance Of Optically Controlled Gaas Switches, St. T. Ko, V. K. Lakdawala, K. H. Schoenbach, M. S. Mazzola Jan 1990

Influence Of Copper Doping On The Performance Of Optically Controlled Gaas Switches, St. T. Ko, V. K. Lakdawala, K. H. Schoenbach, M. S. Mazzola

Electrical & Computer Engineering Faculty Publications

The influence of the copper concentration in silicon-doped gallium arsenide on the photoionization and photoquenching of charge carriers was studied both experimentally and theoretically. The studies indicate that the compensation ratio (NCu/NSi) is an important parameter for the GaAs:Si:Cu switch systems with regard to the turn-on and turn-off performance. The optimum copper concentration for the use of GaAs:Si:Cu as an optically controlled closing and opening switch is determined.


Gaas Photoconductive Closing Switches With High Dark Resistance And Microsecond Conductivity Decay, M. S. Mazzola, K. H. Schoenbach, V. K. Lakdawala, R. Germer, G. M. Loubriel, F. J. Zutavern Jan 1989

Gaas Photoconductive Closing Switches With High Dark Resistance And Microsecond Conductivity Decay, M. S. Mazzola, K. H. Schoenbach, V. K. Lakdawala, R. Germer, G. M. Loubriel, F. J. Zutavern

Electrical & Computer Engineering Faculty Publications

Silicon-doped n-type gallium arsenide crystals, compensated with diffused copper, were studied with respect to their application as photoconductive, high-power closing switches. The attractive features of GaAs:Cu switches are their high dark resistivity, their efficient activation with Nd:YAG laser radiation, and their microsecond conductivity decay time constant. In the authors' experiment, electric fields are high as 19 kV/cm were switched, and current densities of up to 10 kA/cm2 were conducted through a closely compensated crystal. At field strengths greater than approximately 10 kV/cm, a voltage `lock-on' effect was observed.


Nanosecond Optical Quenching Of Photoconductivity In A Bulk Gaas Switch, M. S. Mazzola, K. H. Schoenbach, V. K. Lakdawala, S. T. Ko Jan 1989

Nanosecond Optical Quenching Of Photoconductivity In A Bulk Gaas Switch, M. S. Mazzola, K. H. Schoenbach, V. K. Lakdawala, S. T. Ko

Electrical & Computer Engineering Faculty Publications

Persistent photoconductivity in copper-compensated, silicon-doped semi-insulating gallium arsenide with a time constant as large as 30 µs has been excited by sub-band-gap laser radiation of photon energy greater than 1 eV. This photoconductivity has been quenched on a nanosecond time scale by laser radiation of photon energy less than 1 eV. The proven ability to turn the switch conductance on and off on command, and to scale the switch to high power could make this semiconductor material the basis of an optically controlled pulsed-power closing and opening switch.


An Optically Controlled Closing And Opening Semiconductor Switch, K. H. Schoenbach, V. K. Lakdawala, R. Germer, S. T. Ko Jan 1988

An Optically Controlled Closing And Opening Semiconductor Switch, K. H. Schoenbach, V. K. Lakdawala, R. Germer, S. T. Ko

Electrical & Computer Engineering Faculty Publications

A concept for a bulk semiconductor switch is presented, where the conductivity is increased and reduced, respectively, through illumination with light of different wavelengths. The increase in conductivity is accomplished by electron ionization from deep centers and generation of bound holes. The reduction of conductivity is obtained by hole ionization from the excited centers and subsequent recombination of free electrons and holes. The transient behavior of electron and hole density in a high power semiconductor (GaAs:Cu) switch is computed by means of a rate equation model. Changes in conductivity by five orders of magnitude can be obtained.