Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

PDF

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 661 - 690 of 1650

Full-Text Articles in Physics

A New Architecture For Application-Aware Cognitive Multihop Wireless Networks, Trenton Evans, Kossivi Tossou, Feng Ye, Zhihui Shu, Yi Qian, Yaoqing Yang, Hamid Sharif Mar 2016

A New Architecture For Application-Aware Cognitive Multihop Wireless Networks, Trenton Evans, Kossivi Tossou, Feng Ye, Zhihui Shu, Yi Qian, Yaoqing Yang, Hamid Sharif

Electrical and Computer Engineering Faculty Publications

In this article, we propose a new architecture for AC-MWN. Cognitive radio is a technique to adaptively use the spectrum so that the resource can be used more efficiently in a low-cost way. A multihop wireless network can be deployed quickly and flexibly without fixed infrastructure. In our proposed new architecture, we study backbone routing schemes with network cognition, and a routing scheme with network coding and spectrum adaptation. A testbed is implemented to test the proposed schemes for AC-MWN. In addition to basic measurements, we implement a video streaming application based on the proposed AC-MWN architecture using cognitive radios. …


A Real-Time Information Based Demand-Side Management System In Smart Grid, Feng Ye, Yi Qian, Rose Qingyang Hu Feb 2016

A Real-Time Information Based Demand-Side Management System In Smart Grid, Feng Ye, Yi Qian, Rose Qingyang Hu

Electrical and Computer Engineering Faculty Publications

In this paper, we study a real-time information based demand-side management (DSM) system with advanced communication networks in smart grid. DSM can smooth peak-to-average ratio (PAR) of power usage in the grid, which in turn reduces the waste of fuel and the emission of greenhouse gas. We first target to minimize PAR with a centralized scheme. To motivate power suppliers, we further propose another centralized scheme targeting minimum power generation cost. However, customers may not be motivated by a centralized scheme since such a scheme requires total control and privacy from them. A centralized scheme also requires too much real-time …


An Adaptive Security Protocol For A Wireless Sensor‐Based Monitoring Network In Smart Grid Transmission Lines, Xuping Zhang, Feng Ye, Sucheng Fan, Jinghong Guo, Guoliang Xu, Yi Qian Jan 2016

An Adaptive Security Protocol For A Wireless Sensor‐Based Monitoring Network In Smart Grid Transmission Lines, Xuping Zhang, Feng Ye, Sucheng Fan, Jinghong Guo, Guoliang Xu, Yi Qian

Electrical and Computer Engineering Faculty Publications

In this paper, we propose a new security protocol for a wireless sensor network, which is designed for monitoring long range power transmission lines in smart grid. Part of the monitoring network is composed of optical fiber composite over head ground wire (OPGW), thus it can be secured with conventional security protocol. However, the wireless sensor network between two neighboring OPGW gateways remains vulnerable. Our proposed security protocol focuses on the wireless sensor network part, it provides mutual authentication, data integrity, and data confidentiality for both uplink and downlink transmissions between the sensor nodes and the OPGW gateway. Besides, our …


System And Method For Identifying Electrical Properties Of Integrate Circuits, Mary Y. Lanzerotti Jan 2016

System And Method For Identifying Electrical Properties Of Integrate Circuits, Mary Y. Lanzerotti

AFIT Patents

A new method for displaying electrical properties for integrated circuit (IC) layout designs provides for improved human visualization of those properties and comparison of as designed layout design parameters to as specified layout design parameters and to as manufactured layout parameters. The method starts with a circuitry as designed layout in a first digital format, extracts values for electrical properties from that circuitry as designed layout then annotates those values back into the first digital format. The annotated circuitry as designed layout is then converted from the first digital format to a second digital format that can be converted to …


Electrical Parasitic Bandwidth Limitations Of Oxide-Free Lithographic Vertical-Cavity Surface-Emitting Lasers, Xu Yang Jan 2016

Electrical Parasitic Bandwidth Limitations Of Oxide-Free Lithographic Vertical-Cavity Surface-Emitting Lasers, Xu Yang

Electronic Theses and Dissertations

Nowadays, Vertical-Cavity Surface-Emitting Lasers (VCSELs) are the most popular optical sources in short-reach data communications. In the commercial oxide VCSEL technology, an oxide aperture is created inside resonant cavity in realizing good mode and current confinement, however, high electrical resistance comes along with forming the oxide aperture and the electrical parasitic bandwidth becomes the main limitation in modulation speed. In this report, electrical bandwidths of oxide-free lithographic VCSELs have been studied along with their general lasing properties. Due to the new ways of fabricating the aperture, record low resistances have been achieved in oxide-free lithographic VCSELs with various sizes, while …


Broad Bandwidth Optical Frequency Combs From Low Noise, High Repetition Rate Semiconductor Mode-Locked Lasers, Anthony Klee Jan 2016

Broad Bandwidth Optical Frequency Combs From Low Noise, High Repetition Rate Semiconductor Mode-Locked Lasers, Anthony Klee

Electronic Theses and Dissertations

Mode-locked lasers have numerous applications in the areas of communications, spectroscopy, and frequency metrology. Harmonically mode-locked semiconductor lasers with external ring cavities offer a unique combination of benefits in that they can produce high repetition rate pulse trains with low timing jitter, achieve narrow axial mode linewidths, have the potential for entire monolithic integration on-chip, feature high wall-plug efficiency due to direct electrical pumping, and can be engineered to operate in different wavelength bands of interest. However, lasers based on InP/InGaAsP quantum well devices which operate in the important telecom C-band have thus far been relatively limited in bandwidth as …


Multi-Purpose Device For Analyzing And Measuring Ultra-Short Pulses, Naman Anilkumar Mehta Jan 2016

Multi-Purpose Device For Analyzing And Measuring Ultra-Short Pulses, Naman Anilkumar Mehta

Electronic Theses and Dissertations

Intensity auto correlator is device to measure pulse widths of ultrashort pulses on the order of picoseconds and femtoseconds. I have built an in-house, compact, portable, industry standard intensity auto correlator for measuring ultrashort pulse-widths. My device is suitable for pulse-widths from 500 ps to 50 fs. The impetus for developing this instrument stemmed from our development of a multicore-fiber laser for high power laser applications, which also produces very short pulses that cannot be measured with an oscilloscope. As techniques for measuring short pulse-widths have been well studied, what made my journey exciting was the process of taking an …


Anisotropy, Phonon Modes, And Free Charge Carrier Parameters In Monoclinic Β-Gallium Oxide Single Crystals, Mathias Schubert, Rafal Korlacki, Sean Knight, Tino Hofmann, Stefan Schöche, Vanya Darakchieva, Erik Janzén, Bo Monemar, Daniela Gogova, Q.-T. Thieu, R. Togashi, H. Murakami, Yoshinao Kumagai, Ken Goto, Akito Kuramata, S. Yamakoshi, Masataka Higashiwaki Jan 2016

Anisotropy, Phonon Modes, And Free Charge Carrier Parameters In Monoclinic Β-Gallium Oxide Single Crystals, Mathias Schubert, Rafal Korlacki, Sean Knight, Tino Hofmann, Stefan Schöche, Vanya Darakchieva, Erik Janzén, Bo Monemar, Daniela Gogova, Q.-T. Thieu, R. Togashi, H. Murakami, Yoshinao Kumagai, Ken Goto, Akito Kuramata, S. Yamakoshi, Masataka Higashiwaki

Department of Electrical and Computer Engineering: Faculty Publications

We derive a dielectric function tensor model approach to render the optical response of monoclinic and triclinic symmetry materials with multiple uncoupled infrared and far-infrared active modes. We apply our model approach to monoclinic β-Ga2O3 single-crystal samples. Surfaces cut under different angles from a bulk crystal, (010) and (2̅01), are investigated by generalized spectroscopic ellipsometry within infrared and far-infrared spectral regions. We determine the frequency dependence of 4 independent β-Ga2O3 Cartesian dielectric function tensor elements by matching large sets of experimental data using a point-by-point data inversion approach. From matching our monoclinic …


Band Gap Engineering Of N-Alloyed Ga2o3 Thin Films, Dongyu Song, Li Li, Bingsheng Li, Yu Sui, Aidong Shen Jan 2016

Band Gap Engineering Of N-Alloyed Ga2o3 Thin Films, Dongyu Song, Li Li, Bingsheng Li, Yu Sui, Aidong Shen

Publications and Research

The authors report the tuning of band gap of GaON ternary alloy in a wide range of 2.75 eV. The samples were prepared by a two-step nitridation method. First, the samples were deposited on 2-inch fused silica substrates by megnetron sputtering with NH3 and Ar gas for 60 minutes. Then they were annealed in NH3 ambience at different temperatures. The optical band gap energies are calculated from transmittance measurements. With the increase of nitridation temperature, the band gap gradually decreases from 4.8 eV to 2.05 eV. X-ray diffraction results indicate that as-deposited amorphous samples can crystallize into monoclinic and hexagonal …


A High Performance Ceramic-Polymer Separator For Lithium Batteries, Jitendra Kumar, Padmakar Kichambare, Amarendra K. Rai, Rabi Bhattacharya, Stanley J. Rodrigues, Guru Subramanyam Jan 2016

A High Performance Ceramic-Polymer Separator For Lithium Batteries, Jitendra Kumar, Padmakar Kichambare, Amarendra K. Rai, Rabi Bhattacharya, Stanley J. Rodrigues, Guru Subramanyam

Electrical and Computer Engineering Faculty Publications

A three-layered (ceramic-polymer-ceramic) hybrid separator was prepared by coating ceramic electrolyte [lithium aluminum germanium phosphate (LAGP)] over both sides of polyethylene (PE) polymer membrane using electron beam physical vapor deposition (EB-PVD) technique. Ionic conductivities of membranes were evaluated after soaking PE and LAGP/PE/LAGP membranes in a 1 Molar (1M) lithium hexafluroarsenate (LiAsF6) electrolyte in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) in volume ratio (1:1:1). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to evaluate morphology and structure of the separators before and after cycling performance tests to better understand structure-property correlation. …


The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves Jan 2016

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves

Theses and Dissertations

Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies (~14%) in …


Rapid And Accurate C-V Measurements, Ji-Hong Kim, Pragya R. Shrestha, Jason P. Campbell, Jason T. Ryan, David Nminibapiel, Joseph J. Kopanski Jan 2016

Rapid And Accurate C-V Measurements, Ji-Hong Kim, Pragya R. Shrestha, Jason P. Campbell, Jason T. Ryan, David Nminibapiel, Joseph J. Kopanski

Electrical & Computer Engineering Faculty Publications

We report a new technique for the rapid measurement of full capacitance-voltage (C-V) characteristic curves. The displacement current from a 100-MHz applied sine wave, which swings from accumulation to strong inversion, is digitized directly using an oscilloscope from the MOS capacitor under test. A C-V curve can be constructed directly from this data but is severely distorted due to nonideal behavior of real measurement systems. The key advance of this paper is to extract the system response function using the same measurement setup and a known MOS capacitor. The system response correction to the measured C-V curve of the unknown …


Advanced Blue Phase Liquid Crystal Displays, Daming Xu Jan 2016

Advanced Blue Phase Liquid Crystal Displays, Daming Xu

Electronic Theses and Dissertations

Thin-film transistor (TFT) liquid crystal displays (LCDs) have become indispensable in our daily lives. Their widespread applications range from smartphones, laptops, TVs to navigational devices, data projectors and wearable displays. Over past decades, massive efforts have been invested in device development, material characterization and manufacturing technology. As a result, the performance of LCDs, such as viewing angle, contrast ratio, color gamut and resolution, have been improved significantly. Nonetheless, there are still urgent needs for fast response time and low power consumption. Fast response time helps reduce motion image blurs and enable color sequential displays. The latter is particularly attractive since …


Sensing Using Specialty Optical Fibers, Amy Van Newkirk Jan 2016

Sensing Using Specialty Optical Fibers, Amy Van Newkirk

Electronic Theses and Dissertations

Fiber optic based sensing is a growing field with many applications in civil and aerospace engineering, oil and gas industries, and particularly in harsh environments where electronics are not able to function. Optical fibers can be easily integrated into structures, are immune to electromagnetic interference, can be interrogated from remote distances, and can be multiplexed for distributed measurements. Because of these properties, specialty fiber designs and devices are being explored for sensing temperature, strain, pressure, curvature, refractive index, and more. Here we show a detailed analysis of a multicore fiber (MCF) for sensing, including its design and optimization in simulation, …


Intrinsic Modulation Response Modeling And Analysis For Lithographic Vertical-Cavity Surface-Emitting Lasers, Mingxin Li Jan 2016

Intrinsic Modulation Response Modeling And Analysis For Lithographic Vertical-Cavity Surface-Emitting Lasers, Mingxin Li

Electronic Theses and Dissertations

Vertical-cavity surface-emitting lasers (VCSELs) have been greatly improved and successfully commercialized over the past few decades owing to their ability to provide both mode and current confinement that enables low energy consumption, high efficiency and high modulation speed. However, further improvement of oxide VCSELs is limited by the nature of the oxide aperture because of self-heating, internal strain and difficulties in precise size control. In this dissertation, VCSELs using lithographic approach are demonstrated to overcome the limitations of oxide VCSELs, in which an intra-cavity phase shifting mesa is applied to define the device size and provide optical mode and electrical …


Fusion Of Renewable Ring Resonator Lasers And Ultrafast Laser Inscribed Photonic Waveguides, Hengky Chandrahalim, Stephen C. Rand, Xudong Fan Jan 2016

Fusion Of Renewable Ring Resonator Lasers And Ultrafast Laser Inscribed Photonic Waveguides, Hengky Chandrahalim, Stephen C. Rand, Xudong Fan

Faculty Publications

We demonstrated the monolithic integration of reusable and wavelength reconfigurable ring resonator lasers and waveguides of arbitrary shapes to out-couple and guide laser emission on the same fused-silica chip. The ring resonator hosts were patterned by a single-mask standard lithography, whereas the waveguides were inscribed in the proximity of the ring resonator by using 3-dimensional femtosecond laser inscription technology. Reusability of the integrated ring resonator – waveguide system was examined by depositing, removing, and re-depositing dye-doped SU-8 solid polymer, SU-8 liquid polymer, and liquid solvent (toluene). The wavelength reconfigurability was validated by employing Rhodamine 6G (R6G) and 3,3′-Diethyloxacarbocyanine iodide (CY3) …


Unequal A Priori Probability Multiple Hypothesis Testing In Space Domain Awareness With The Space Surveillance Telescope, Tyler J. Hardy, Stephen C. Cain, Travis F. Blake Jan 2016

Unequal A Priori Probability Multiple Hypothesis Testing In Space Domain Awareness With The Space Surveillance Telescope, Tyler J. Hardy, Stephen C. Cain, Travis F. Blake

Faculty Publications

This paper investigates the ability to improve Space Domain Awareness (SDA) by increasing the number of detectable Resident Space Objects (RSOs) from space surveillance sensors. With matched filter based techniques, the expected impulse response, or Point Spread Function (PSF), is compared against the received data. In the situation where the images are spatially undersampled, the modeled PSF may not match the received data if the RSO does not fall in the center of the pixel. This aliasing can be accounted for with a Multiple Hypothesis Test (MHT). Previously, proposed MHTs have implemented a test with an equal a priori prior …


Two-Dimensional Low-Resistance Contacts For High Performance Wse2 And Mos2 Transistors, Hsun Jen Chuang Jan 2016

Two-Dimensional Low-Resistance Contacts For High Performance Wse2 And Mos2 Transistors, Hsun Jen Chuang

Wayne State University Dissertations

ABSTRACT

TWO-DIMENSIONAL LOW-RESISTANCE CONTACTS FOR HIGH PERFORMANCE WSe2 and MoS2, TRANSISTORS

by

Hsun-jen Chuang

May 2016

Advisor: Dr. Zhixian Zhou

Major: Physics

Degree: Doctor of Philosophy

Two-dimensional layered materials beyond graphene such as transition metal dichalcogenides (TMDs) have attracted a lot of interests due to their superior property in many aspects. In this work, I am focusing on two TMD materials: WSe2 and MoS2. The main objective this work is to develop novel approaches to fabricating low-resistance ohmic contacts to TMDs for low power, high performance electronic applications. First, we used graphene as electrical contacts for WSe2 field-effect transistor with …


Development Of Iii-Sb Based Technologies For P-Channel Mosfet In Cmos Applications, Shailesh Kumar Madisetti Jan 2016

Development Of Iii-Sb Based Technologies For P-Channel Mosfet In Cmos Applications, Shailesh Kumar Madisetti

Legacy Theses & Dissertations (2009 - 2024)

The continuous scaling of silicon CMOS predicts the end of roadmap due to the difficulties such as that arise from electrostatic integrity, design complexities, and power dissipation. These fundamental and practical limitations bring the need for innovative design architectures or alternate materials with higher carrier transport than current Si based materials. New device designs such as multigate/gate-all-around architectures improve electrostatics while alternate materials like III-Vs such as III-As for electrons and III-Sbs for holes increase operational speed, lower power dissipation and thereby improve performance of the transistors due to their low effective mass and faster transport properties. Further, application of …


Novel Two-Dimensional Devices For Future Applications, Pratik Agnihotri Jan 2016

Novel Two-Dimensional Devices For Future Applications, Pratik Agnihotri

Legacy Theses & Dissertations (2009 - 2024)

The scalability of field effect transistor has led to the monumental success of complementary metal-oxide-semiconductor (CMOS) technology. In the past, device scaling was not the major issue to a greater extent. Recently with current technology nodes, transistor characteristics show signs of reduced performance due to short channel effects and other issues related to device scaling. Device designers look for innovative ways to enhance the transistor performance while keeping up with device miniaturization. Successful inventions include the development of tri-gate technology, gate all around (GAA) field effect transistors, silicon-on-insulator substrate, and high-k dielectrics. These developments have enabled the device scaling that …


Photovoltaics: An Investigation Into The Origins Of Efficiency On All Scales, Jeremy Alexander Bannister Jan 2016

Photovoltaics: An Investigation Into The Origins Of Efficiency On All Scales, Jeremy Alexander Bannister

Senior Projects Spring 2016

This project is comprised of a set of parallel investigations, which share the common mo- tivation of increasing the efficiency of photovoltaics. First, the reader is introduced to core concepts of photovoltaic energy conversion via a semi-classical description of the phys- ical system. Second, a key player in photovoltaic efficiency calculations, the exciton, is discussed in greater quantum mechanical detail. The reader will be taken through a nu- merical derivation of the low-energy exciton states in various geometries, including a line segment, a circle and a sphere. These numerical calculations are done using Mathematica, a computer program which, due to …


Dense Periodical Patterns In Photonic Devices: Technology For Fabrication And Device Performance, Sabarish Chandramohan Jan 2016

Dense Periodical Patterns In Photonic Devices: Technology For Fabrication And Device Performance, Sabarish Chandramohan

Wayne State University Dissertations

For the fabrication, focused ion beam parameters are investigated to successfully fabricate dense periodical patterns, such as gratings, on hard transition metal nitride such as zirconium nitride. Transition metal nitrides such as titanium nitride and zirconium nitride have recently been studied as alternative materials for plasmonic devices because of its plasmonic resonance in the visible and near-infrared ranges, material strength, CMOS compatibility and optical properties resembling gold. Coupling of light on the surface of these materials using sub-micrometer gratings gives additional capabilities for wider applications. Here we report the fabrication of gratings on the surface of zirconium nitride using gallium …


Intensity Control Of Dielectric Barrier Discharge Filaments, Matthew Crawford Paliwoda Jan 2016

Intensity Control Of Dielectric Barrier Discharge Filaments, Matthew Crawford Paliwoda

Masters Theses

"When operated in a filamentary mode, a volume dielectric barrier discharge (DBD) is known to produce patterned plasma structures. These structures are currently being explored for reconfigurable metamaterial applications. In this work the presence and intensity of a single filament, within an array of filaments, was controlled by adjusting the voltage to that filament's individual needle electrode. The current, voltage, and time-averaged normalized light intensity were measured while varying the voltage of the needle through a self-biasing resistance. For a 7.5 kV, 3.2 kHz DBD in air, the needle-controlled filament intensity varies from that of the surrounding filaments to zero …


Comparison Between Electropositive And Electronegative Cold Atmospheric-Pressure Plasmas: A Modelling Study, Ding X. Liu, Jia F. Li, Ai J. Yang, Xiao H. Wang, Ming Z. Rong, Michael G. Kong Jan 2016

Comparison Between Electropositive And Electronegative Cold Atmospheric-Pressure Plasmas: A Modelling Study, Ding X. Liu, Jia F. Li, Ai J. Yang, Xiao H. Wang, Ming Z. Rong, Michael G. Kong

Bioelectrics Publications

Cold atmospheric-pressure He + N2 and He + O2 plasmas are chosen as the representatives for electropositive and electronegative plasmas, of which the discharge characteristics are studied and then compared to each other by fluid models. As the increase of the impurity (N2 or O2) fraction from 0 to 10%, for He + N2 plasmas the electron density and ion density increase, the spatiotemporal distributions of electron density, ion density, electron temperature and electron generation rate change a little. On contrast, for He + O2 plasmas the electron density decreases, the ion density …


Lifetime And Efficiency Improvement Of Organic Luminescent Solar Concentrators For Photovoltaic Applications, Yamna El Mouedden Jan 2016

Lifetime And Efficiency Improvement Of Organic Luminescent Solar Concentrators For Photovoltaic Applications, Yamna El Mouedden

Theses: Doctorates and Masters

In order to achieve the goal of zero net-energy consumption in residential and commercial buildings, substantial research has been devoted to developing methods for energy harvesting from window glass that is capable of passing visible light through the windows of buildings while converting the unwanted invisible solar radiation into electricity. Research has focussed on two particular aspects, namely (i) the integration of thin-film technology for solar radiation transmission control and (ii) light guiding structures for solar radiation routing towards the edges of the glass window.

Recently, photovoltaic (PV) solar cells have been investigated and promoted as products for converting solar …


Beyond Conventional C-Plane Gan-Based Light Emitting Diodes: A Systematic Exploration Of Leds On Semi-Polar Orientations, Morteza Monavarian Jan 2016

Beyond Conventional C-Plane Gan-Based Light Emitting Diodes: A Systematic Exploration Of Leds On Semi-Polar Orientations, Morteza Monavarian

Theses and Dissertations

Despite enormous efforts and investments, the efficiency of InGaN-based green and yellow-green light emitters remains relatively low, and that limits progress in developing full color display, laser diodes, and bright light sources for general lighting. The low efficiency of light emitting devices in the green-to-yellow spectral range, also known as the “Green Gap”, is considered a global concern in the LED industry. The polar c-plane orientation of GaN, which is the mainstay in the LED industry, suffers from polarization-induced separation of electrons and hole wavefunctions (also known as the “quantum confined Stark effect”) and low indium incorporation efficiency that …


Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii Dec 2015

Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii

University of New Orleans Theses and Dissertations

An anguilliform swimming robot replicating an idealized motion is a complex marine vehicle necessitating both a theoretical and experimental analysis to completely understand its propulsion characteristics. The ideal anguilliform motion within is theorized to produce ``wakeless'' swimming (Vorus, 2011), a reactive swimming technique that produces thrust by accelerations of the added mass in the vicinity of the body. The net circulation for the unsteady motion is theorized to be eliminated.

The robot was designed to replicate the desired, theoretical motion by applying control theory methods. Independent joint control was used due to hardware limitations. The fluid velocity vectors in the …


Vanadium Oxide Thin-Film Variable Resistor-Based Rf Switches, Kuanchang Pan, Weisong Wang, Eunsung Shin, Kelvin Freeman, Guru Subramanyam Dec 2015

Vanadium Oxide Thin-Film Variable Resistor-Based Rf Switches, Kuanchang Pan, Weisong Wang, Eunsung Shin, Kelvin Freeman, Guru Subramanyam

Guru Subramanyam

Vanadium dioxide (VO2) is a unique phase change material (PCM) that possesses a metal-to-insulator transition property. Pristine VO2 has a negative temperature coefficient of resistance, and it undergoes an insulator-to-metal phase change at a transition temperature of 68°C. Such a property makes the VO2 thin-film-based variable resistor (varistor) a good candidate in reconfigurable electronics to be integrated with different RF devices such as inductors, varactors, and antennas. Series single-pole single-throw (SPST) switches with integrated VO2 thin films were designed, fabricated, and tested. The overall size of the device is 380 μm × 600 μm. The SPST switches were fabricated on …


A High Performance Ceramic-Polymer Separator For Lithium Batteries, Jitendra Kumar, Padmakar Kichambare, Amarendra K. Rai, Rabi Bhattacharya, Stanley J. Rodrigues, Guru Subramanyam Dec 2015

A High Performance Ceramic-Polymer Separator For Lithium Batteries, Jitendra Kumar, Padmakar Kichambare, Amarendra K. Rai, Rabi Bhattacharya, Stanley J. Rodrigues, Guru Subramanyam

Guru Subramanyam

A three-layered (ceramic-polymer-ceramic) hybrid separator was prepared by coating ceramic electrolyte [lithium aluminum germanium phosphate (LAGP)] over both sides of polyethylene (PE) polymer membrane using electron beam physical vapor deposition (EB-PVD) technique. Ionic conductivities of membranes were evaluated after soaking PE and LAGP/PE/LAGP membranes in a 1 Molar (1M) lithium hexafluroarsenate (LiAsF6) electrolyte in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) in volume ratio (1:1:1). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to evaluate morphology and structure of the separators before and after cycling performance tests to better understand structure-property correlation. As compared …


Industry-University Collaboration: A University Of Dayton Model, Guru Subramanyam Dec 2015

Industry-University Collaboration: A University Of Dayton Model, Guru Subramanyam

Guru Subramanyam

This paper introduces industry-university collaboration activities currently in place at the University of Dayton's School of Engineering. These collaborations are important to prepare industry-ready graduates who excel in technical, entrepreneurial, and leadership skills. One of the key curricular components is the industry-sponsored multidisciplinary projects. Industry involvement in advisory committee, strategic research partnerships, and other forms are discussed.