Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

PDF

Series

2015

Institution
Keyword
Publication

Articles 31 - 47 of 47

Full-Text Articles in Physics

Multiple Object Detection In Hyperspectral Imagery Using Spectral Fringe-Adjusted Joint Transform Correlator, Paheding Sidike, Vijayan K. Asari, Mohammad S. Alam Feb 2015

Multiple Object Detection In Hyperspectral Imagery Using Spectral Fringe-Adjusted Joint Transform Correlator, Paheding Sidike, Vijayan K. Asari, Mohammad S. Alam

Electrical and Computer Engineering Faculty Publications

Hyperspectral imaging (HSI) sensors provide plenty of spectral information to uniquely identify materials by their reflectance spectra, and this information has been effectively used for object detection and identification applications. Joint transform correlation (JTC) based object detection techniques in HSI have been proposed in the literatures, such as spectral fringe-adjusted joint transform correlation (SFJTC) and with its several improvements.

However, to our knowledge, the SFJTC based techniques were designed to detect only similar patterns in hyperspectral data cube and not for dissimilar patterns. Thus, in this paper, a new deterministic object detection approach using SFJTC is proposed to perform multiple …


Where To Buy Materials For The Activities, Morton Sternheim Jan 2015

Where To Buy Materials For The Activities, Morton Sternheim

Nanotechnology Teacher Summer Institutes

Sources for some of the less common materials used in the activities.


Seeing At The Nanoscale: New Microscopies For The Life Sciences, Jennifer Ross Jan 2015

Seeing At The Nanoscale: New Microscopies For The Life Sciences, Jennifer Ross

Nanotechnology Teacher Summer Institutes

Visualizing single modules with fluorescence microscopy


Properties Of Cu(In,Ga,Al)Se² Thin Films Fabricated By Magnetron Sputtering, Talaat A. Hameed, Wei Cao, Bahiga A. Mansour, Inas K. Elzawaway, El-Metwally M. Abdelrazek, Hani E. Elsayed-Ali Jan 2015

Properties Of Cu(In,Ga,Al)Se² Thin Films Fabricated By Magnetron Sputtering, Talaat A. Hameed, Wei Cao, Bahiga A. Mansour, Inas K. Elzawaway, El-Metwally M. Abdelrazek, Hani E. Elsayed-Ali

Applied Research Center Publications

Cu (In,Ga,Al)Se2 (CIGAS) thin films were studied as an alternative absorber layer material to Cu(InxGa1-x)Se2. CIGAS thin films with varying Al content were prepared by magnetron sputtering on Si(100) and soda-lime glass substrates at 350 °C, followed by postdeposition annealing at 520 °C for 5 h in vacuum. The film composition was measured by an electron probe microanalyzer while the elemental depth profiles were determined by secondary ion mass spectrometry. X-ray diffraction studies indicated that CIGAS films are single phase with chalcopyrite structure and that the (112) peak clearly shifts to higher 2θ …


A Collaborative Adaptive Wiener Filter For Multi-Frame Super-Resolution, Khaled M. Mohamed, Russell C. Hardie Jan 2015

A Collaborative Adaptive Wiener Filter For Multi-Frame Super-Resolution, Khaled M. Mohamed, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

Factors that can limit the effective resolution of an imaging system may include aliasing from under-sampling, blur from the optics and external factors, and sensor noise. Image restoration and super-resolution (SR) techniques can be used to improve image resolution. One SR method, developed recently, is the adaptive Wiener filter (AWF) SR algorithm. This is a multi-frame SR method that combines registered temporal frames through a joint nonuniform interpolation and restoration process to provide a high-resolution image estimate. Variations of this method have been demonstrated to be effective for multi-frame SR, as well demosaicing RGB and polarimetric imagery. While the AWF …


Impact Of Detector-Element Active-Area Shape And Fill Factor On Image Sampling, Restoration, And Super-Resolution, Russell C. Hardie, Douglas R. Droege, Alexander J. Dapore, Mark E. Greiner Jan 2015

Impact Of Detector-Element Active-Area Shape And Fill Factor On Image Sampling, Restoration, And Super-Resolution, Russell C. Hardie, Douglas R. Droege, Alexander J. Dapore, Mark E. Greiner

Electrical and Computer Engineering Faculty Publications

In many undersampled imaging systems, spatial integration from the individual detector elements is the dominant component of the system point spread function (PSF). Conventional focal plane arrays (FPAs) utilize square detector elements with a nearly 100% fill factor, where fill factor is defined as the fraction of the detector element area that is active in light detection. A large fill factor is generally considered to be desirable because more photons are collected for a given pitch, and this leads to a higher signal-to-noise-ratio (SNR). However, the large active area works against super-resolution (SR) image restoration by acting as an additional …


Nanomechanical And Morphological Characterization Of Tungsten Trioxide (Wo3) Thin Films Grown By Atomic Layer Deposition, M. A. Mamun, K. Zhang, H. Baumgart, A. A. Elmustafa Jan 2015

Nanomechanical And Morphological Characterization Of Tungsten Trioxide (Wo3) Thin Films Grown By Atomic Layer Deposition, M. A. Mamun, K. Zhang, H. Baumgart, A. A. Elmustafa

Mechanical & Aerospace Engineering Faculty Publications

This study investigates the nanomechanical properties and surface morphology of tungsten oxide WO3thin films deposited on p-type Si(100) substrates using atomic layer deposition (ALD) technology with 2000 ALD deposition cycles at a growth temperature of 300°C and annealed at different temperatures. The samples were further furnace annealed at 500, 600 and 700°C for 60 min. The influence of the deposition process on the structure and properties of the WO3 films is discussed, presented and correlated to the characteristic features of the ALD technique. The results depict significant difference in the hardness and modulus measurements between the as …


Multiferroic Tunnel Junctions And Ferroelectric Control Of Magnetic State At Interface, Y. W. Yin, M. Raju, W. J. Hu, John D. Burton, Y.-M. Kim, A. Y. Borisevich, S. J. Pennycook, S. M. Yang, T. W. Noh, Alexei Gruverman, X. G. Li, Z. D. Zhang, Evgeny Y. Tsymbal, Qi Li Jan 2015

Multiferroic Tunnel Junctions And Ferroelectric Control Of Magnetic State At Interface, Y. W. Yin, M. Raju, W. J. Hu, John D. Burton, Y.-M. Kim, A. Y. Borisevich, S. J. Pennycook, S. M. Yang, T. W. Noh, Alexei Gruverman, X. G. Li, Z. D. Zhang, Evgeny Y. Tsymbal, Qi Li

Alexei Gruverman Publications

As semiconductor devices reach ever smaller dimensions, the challenge of power dissipation and quantum effect place a serious limit on the future device scaling. Recently, a multiferroic tunnel junction (MFTJ) with a ferroelectric barrier sandwiched between two ferromagnetic electrodes has drawn enormous interest due to its potential applications not only in multi-level data storage but also in electric field controlled spintronics and nanoferronics. Here, we present our investigations on four-level resistance states, giant tunneling electroresistance (TER) due to interfacial magnetoelectric coupling, and ferroelectric control of spin polarized tunneling in MFTJs. Coexistence of large tunneling magnetoresistance and TER has been observed …


Robust Super-Resolution By Fusion Of Interpolated Frames For Color And Grayscale Images, Barry K. Karch, Russell C. Hardie Jan 2015

Robust Super-Resolution By Fusion Of Interpolated Frames For Color And Grayscale Images, Barry K. Karch, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

Multi-frame super-resolution (SR) processing seeks to overcome undersampling issues that can lead to undesirable aliasing artifacts in imaging systems. A key factor in effective multi-frame SR is accurate subpixel inter-frame registration. Accurate registration is more difficult when frame-to-frame motion does not contain simple global translation and includes locally moving scene objects. SR processing is further complicated when the camera captures full color by using a Bayer color filter array (CFA). Various aspects of these SR challenges have been previously investigated. Fast SR algorithms tend to have difficulty accommodating complex motion and CFA sensors. Furthermore, methods that can tolerate these complexities …


Plasma Processes And Cancer - Special Topical Cluster Of The 2nd Iwpct Meeting, Masaru Hori, Mounir Laroussi, Kai Masur, Yuzuru Ikehara Jan 2015

Plasma Processes And Cancer - Special Topical Cluster Of The 2nd Iwpct Meeting, Masaru Hori, Mounir Laroussi, Kai Masur, Yuzuru Ikehara

Electrical & Computer Engineering Faculty Publications

(First paragraph) Although the emerging multidisciplinary field of plasma medicine has been around for nearly two decades important advances have already taken place that could one day revolutionize healthcare and the way various challenging diseases can be treated.1-3Amongst these advances the effects of low temperature plasma (LTP) on cancer cells in vitro and in vivo stand out.4-13Current cancer treatment modalities, such as chemotherapy and radiation therapy, have serious side effects and tend to lose their benefits to the patients after a while. Therefore, novel and improved therapies that can be used alone …


Evaluation Of The Effects Of A Plasma Activated Medium On Cancer Cells, S. Mohades, M. Laroussi, J. Sears, N. Barekzi, H. Razavi Jan 2015

Evaluation Of The Effects Of A Plasma Activated Medium On Cancer Cells, S. Mohades, M. Laroussi, J. Sears, N. Barekzi, H. Razavi

Electrical & Computer Engineering Faculty Publications

The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma to …


Role Of Antenna Modes And Field Enhancement In Second Harmonic Generation From Dipole Nanoantennas, Domenico De Ceglia, Maria Antonietta Vincenti, Costantino De Angelis, Andrea Locatelli, Joseph W. Haus, Michael Scalora Jan 2015

Role Of Antenna Modes And Field Enhancement In Second Harmonic Generation From Dipole Nanoantennas, Domenico De Ceglia, Maria Antonietta Vincenti, Costantino De Angelis, Andrea Locatelli, Joseph W. Haus, Michael Scalora

Electro-Optics and Photonics Faculty Publications

We study optical second harmonic generation from metallic dipole antennas with narrow gaps. Enhancement of the fundamental-frequency field in the gap region plays a marginal role on conversion efficiency. In the symmetric configuration, i.e., with the gap located at the center of the antenna axis, reducing gap size induces a significant red-shift of the maximum conversion efficiency peak. Either enhancement or inhibition of second-harmonic emission may be observed as gap size is decreased, depending on the antenna mode excited at the harmonic frequency. The second-harmonic signal is extremely sensitive to the asymmetry introduced by gap’s displacements with respect to the …


Simulation Study Of Hemt Structures With Hfo2 Cap Layer For Mitigating Inverse Piezoelectric Effect Related Device Failures, Deepthi Nagulapally, Ravi P. Joshi, Aswini Pradhan Jan 2015

Simulation Study Of Hemt Structures With Hfo2 Cap Layer For Mitigating Inverse Piezoelectric Effect Related Device Failures, Deepthi Nagulapally, Ravi P. Joshi, Aswini Pradhan

Electrical & Computer Engineering Faculty Publications

The Inverse Piezoelectric Effect (IPE) is thought to contribute to possible device failure of GaN High Electron Mobility Transistors (HEMTs). Here we focus on a simulation study to probe the possible mitigation of the IPE by reducing the internal electric fields and related elastic energy through the use of high-k materials. Inclusion of a HfO2 "cap layer" above the AlGaN barrier particularly with a partial mesa structure is shown to have potential advantages. Simulations reveal even greater reductions in the internal electric fields by using "field plates" in concert with high-k oxides


Spark Discharge Coupled Laser Multicharged Ion Source, Md. Haider A. Shaim, Hani E. Elsayed-Ali Jan 2015

Spark Discharge Coupled Laser Multicharged Ion Source, Md. Haider A. Shaim, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

A spark discharge is coupled to a laser multicharged ion source to enhance ion generation. The laser plasma triggers a spark discharge with electrodes located in front of the ablated target. For an aluminum target, the spark discharge results in significant enhancement in the generation of multicharged ions along with higher charge states than observed with the laser source alone. When a Nd:YAG laser pulse (wavelength 1064 nm, pulse width 7.4 ns, pulse energy 72 mJ, laser spot area on target 0.0024 cm2) is used, the total multicharged ions detected by a Faraday cup is 1.0 nC with …


Temporary Bonding With Polydimethylglutarimide Based Lift Off Resist As A Layer Transfer Platform, T. Matsumae, A. D. Koehler, J. D. Greenlee, T. J. Anderson, H. Baumgart, G. G. Jernigan, K. D. Hobart, F. J. Kub Jan 2015

Temporary Bonding With Polydimethylglutarimide Based Lift Off Resist As A Layer Transfer Platform, T. Matsumae, A. D. Koehler, J. D. Greenlee, T. J. Anderson, H. Baumgart, G. G. Jernigan, K. D. Hobart, F. J. Kub

Electrical & Computer Engineering Faculty Publications

Bonding of lift off resist (LOR) was performed to realize temporary wafer bonding without residue. Bonding process conditions such as spin speed, pre-bake temperature, and bonding temperature were optimized to obtain a large bonded area with high bond strength. Under optimized process conditions, a bonded area covering over 98% of the wafer surface, with a room temperature bond strength of nearly 5 J/m2 is achieved. During razor blade testing, fracture often occurs at the Si wafer. Moreover, debonding using an N-Methyl-2-pyrrolidone (NMP)-based solvent left the wafer surface extremely small amount of residue. Thus, the optimized bonding processed developed in …


Monolithic Optofluidic Ring Resonator Lasers Created By Femtosecond Laser Nanofabrication, Hengky Chandrahalim, Qiushu Chen, Ali A. Said, Mark Dugan, Xudong Fan Jan 2015

Monolithic Optofluidic Ring Resonator Lasers Created By Femtosecond Laser Nanofabrication, Hengky Chandrahalim, Qiushu Chen, Ali A. Said, Mark Dugan, Xudong Fan

Faculty Publications

We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ/mm2. Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 104, which is limited by both solvent …


Reconfigurable Solid-State Dye-Doped Polymer Ring Resonator Lasers, Hengky Chandrahalim, Xudong Fan Jan 2015

Reconfigurable Solid-State Dye-Doped Polymer Ring Resonator Lasers, Hengky Chandrahalim, Xudong Fan

Faculty Publications

This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G) and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse …