Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Topological Hall Effect In Particulate Magnetic Nanostructure, Ahsan Ullah Aug 2023

Topological Hall Effect In Particulate Magnetic Nanostructure, Ahsan Ullah

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Conduction electrons change their spin direction due to the exchange interaction with the lattice spins. Ideally, the spins of the conduction electrons follow the atomic spin adiabatically, so that spins like S1, S2, and S3 can be interpreted as time-ordered sequences t1 < t2 < t3. Such spin sequences yield a quantum-mechanical phase factor in the wave function,  →ei, where  is known as the Berry phase. The corresponding spin rotation translates into a Berry curvature and an emergent magnetic field and subsequently, Hall-effect contribution known as the topological Hall-effect. This dissertation explores topological Hall-effect in particulate magnets, where noncollinear spins are stabilized by competition between different magnetic interactions. The topologically non-trivial spin textures in these nanostructures are flower states, curling states, vortex, and magnetic bubbles, which give rise to topological Hall-effect and have finite spin chirality and Skyrmion number Q. Topological Hall-effect is investigated in noninteracting nanoparticles, exchanges coupled centrosymmetric nanoparticles, exchanges coupled non-centrosymmetric nanoparticles which possess Dzyaloshinskii-Moriya interaction (DMI), and exchanged coupled Hard and soft magnetic films. Micromagnetic modeling, simulations, analytical calculations, and experimental methods are used to determine topological Hall-effect. In very small noninteracting nanoparticles, the reverse magnetic fields enhance Q due to the flower state until the reversal occurs, whereas, for particles with a radius greater than coherence radius, the Q jumps to a larger value at the nucleation field representing the curling state. The comparisons of magnetization patterns between experimental and computed magnetic force microscopy (MFM) measurements show the presence of spin chirality. Magnetic and Hall-effect measurements identify topological Hall-effect in the exchange-coupled Co and CoSi-nanoparticle films. The origin of the topological Hall-effect namely, the chiral domains with domain-wall chirality quantified by an integer skyrmion number in Co and chiral spins with partial skyrmion number in CoSi. These spin structures are different from the Skyrmions due to DMI in B-20 crystals and multilayered thin films with Cnv symmetry. In these films THE caused by cooperative magnetization reversal in the exchange-coupled Co-nanoparticles and peripheral chiral spin textures in CoSi-nanoparticles.

Advisor: Xiaoshan Xu


Size-Controlled Synthesis Of Nickel Nanoparticles Enclosed In Carbon Nanocages, Felicity Peebles, Grigorii Rudakov, Gamini U. Sumanasekera Apr 2020

Size-Controlled Synthesis Of Nickel Nanoparticles Enclosed In Carbon Nanocages, Felicity Peebles, Grigorii Rudakov, Gamini U. Sumanasekera

Undergraduate Arts and Research Showcase

We have demonstrated a simple, scalable, and tunable method of obtaining densely packed Ni Nanoparticles encapsulated in Carbon Nanocages (Ni@CNCs). Using a facile method, it was shown that via a simple annealing process of precursor based on nickel acetate and citric acid, Ni@CNCs with sizes varying from 5 to 20 nm can be synthesized by changing the heating ramp rate during the synthesis from 25 to 53 °C/min. The final temperature of 600 °C was held for 10 min, and was the same for all the samples. X-Ray Diffraction (XRD) multiple peaks analysis was performed to show large Ni nanoparticles …


Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman Aug 2014

Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman

Graduate Theses and Dissertations

Over the past ten years the 2D material graphene has attracted an enourmous amount of attention from researchers from across diciplines and all over the world. Many of its outstanding electronic properties are present only when it is not interacting with a substrate but is instead freestanding. In this work I demonstrate that pristine and functionalized freestanding graphene can be imaged using a scanning tunneling microscope (STM) and that imaging a flexible 2D surface is fundamentally different from imaging a bulk material due to the attraction between the STM tip and the sample. This attraction can be used to manipulate …


Synthesis And Properties Of Polymer Nanocomposites With Tunable Electromagnetic Response, Kristen Lee Stojak Jan 2013

Synthesis And Properties Of Polymer Nanocomposites With Tunable Electromagnetic Response, Kristen Lee Stojak

USF Tampa Graduate Theses and Dissertations

Multifunctional polymer nanocomposites (PNCs) are attractive for the design of tunable RF and microwave components such as flexible electronics, attenuators, and antennas due to cost-effectiveness and durability of polymeric matrices. In this work, three separate PNCs were synthesized. Magnetite (Fe3O4) and cobalt ferrite (CFO) nanoparticles, synthesized by thermal decomposition, were used as PNC fillers. Polymers used in this work were a commercial polymer provided by the Rogers Corporation (RP) and polyvinylidene fluoride (PVDF). PNCs in this thesis consist of Fe3O4 in RP, CFO in RP, and Fe3O4 in PVDF. Characterization techniques for determining morphology of the nanoparticles, and their resulting …


Optical Properties Of Photopolymer Layers Doped With Aluminophosphate Nanocrystals, Elsa Leite, Tzvetanka Babeva, E Ng, Vincent Toal, Svetlana Mintova, Izabela Naydenova Jan 2010

Optical Properties Of Photopolymer Layers Doped With Aluminophosphate Nanocrystals, Elsa Leite, Tzvetanka Babeva, E Ng, Vincent Toal, Svetlana Mintova, Izabela Naydenova

Articles

The optical properties of photopolymer layers consisting of an acrylamide–based matrix and microporous aluminophosphate nanocrystals of AEI- type are investigated. The compatibility of the photopolymer doped with the nanoparticles is studied. The surface and volume properties of the layers with different levels of doping with microporous nanocrystals are characterized. The effective refractive indices and absorption coefficients of the doped photopolymer layers are determined and used to calculate the refractive index and porosity of pure AEI nanoparticles used as dopants. Volume transmission gratings were recorded in the doped photopolymer layers at different spatial frequencies. By spatial monitoring of the characteristic Raman …


Effect Of Cosb3 Nanoparticles On The Thermoelectric Properties Of Filled And Unfilled Cosb3 Skutterudites, Paola Alboni Aug 2009

Effect Of Cosb3 Nanoparticles On The Thermoelectric Properties Of Filled And Unfilled Cosb3 Skutterudites, Paola Alboni

All Dissertations

This study explores the possibility of somewhat decoupling the electrical and thermal conduction, thereby being able to limit the thermal conduction while minimizing the effect on the electrical conduction. The approach is using a nanoparticle layer with a slight compositional mismatch as compared to the bulk skutterudite. A hydrothermal nanoparticle-plating technique has been employed to grow a layer of CoSb3 nanoparticles on the surface of skutterudite bulk matrix grains. Skutterudites of various forms were fabricated and studied in order to assess the effect of this nano-plated layer as a viable method in the improvement of thermoelectric properties of CoSb …


Observed Superspin-Glass Behavior In Ni0.5zn0.5fe2o4 Nanoparticles, Antony Adair Jan 2009

Observed Superspin-Glass Behavior In Ni0.5zn0.5fe2o4 Nanoparticles, Antony Adair

Open Access Theses & Dissertations

In this investigation we seek to identify the magnetic behavior of Ni0.5Zn0.5Fe2O4 nanoparticles though AC-susceptibility and DC-magnetization measurements. Powder x-ray diffraction was performed to determine the purity and average diameter ( ~ 9nm) of the particles. Aditionally, structure was confirmed by comparison through the International Centre for Diffraction Data's Powder Diffraction File [52] (PDF # 08-0234).

Zero-field cooled and field cooled DC magnetization measurements (bifurcation and blocking temperature), as well as M(H) hysteresis (below and above the blocking temperature) lead us to initially suggest that the material may in fact be superparamagnetic. However, further investigation of the real AC susceptibility …