Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

PDF

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 861

Full-Text Articles in Physics

Quantics Tensor Trains: The Study Of A Continuous Lattice Model And Beyond, Aleix Bou Comas Jun 2024

Quantics Tensor Trains: The Study Of A Continuous Lattice Model And Beyond, Aleix Bou Comas

Dissertations, Theses, and Capstone Projects

This four-chapter dissertation studies the efficient discretization of continuous variable functions with tensor train representation. The first chapter describes all the methodology used to discretize functions and store them efficiently. In this section, the algorithm tensor renormalization group is explained for self-containment purposes. The second chapter centers around the XY model. Quantics tensor trains are used to describe the transfer matrix of the model and compute one and two-dimensional quantities. The one dimensional magnitudes are compared to analytical results with an agreement close to machine precision. As for two dimensions, the analytical results cannot be computed. However, the critical temperature …


Aspects Of Parity Breaking In Classical And Quantum Fluids, Dylan J. Reynolds Jun 2024

Aspects Of Parity Breaking In Classical And Quantum Fluids, Dylan J. Reynolds

Dissertations, Theses, and Capstone Projects

Parity-breaking is ubiquitous across many scales of physics, from the rotation of galaxies at the largest of scales, to the cyclotron orbits of electrons at the microscopic scale. In describing the collective dynamics of many particle systems, parity breaking effects typically originate from some form of chirality, such as angular momentum, at the level of the constituent particles. External forces can also induce chiral motion, with the primary examples being the Lorentz and Coriolis forces.

The effects of parity breaking are perhaps most strikingly seen in active matter, systems of complex particles that tend to convert energy into some directed …


Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg May 2024

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg

Physics Undergraduate Honors Theses

The utilization of two-dimensional materials and heterostructures, particularly graphene and hexagonal boron nitride, have garnered significant attention in the realm of nanoelectronics due to their unique properties and versatile functionalities. This study focuses on the synthesis and fabrication processes of monolayer graphene encapsulated between layers of hBN, aiming to explore the potential of these heterostructures for various electronic applications. The encapsulation of graphene within hBN layers not only enhances device performance but also shields graphene from environmental contaminants, ensuring long-term stability. Experimental techniques, including mechanical exfoliation and stamp-assisted transfer, are employed to construct three-layer stacks comprising hBN-graphene-hBN. The fabrication process …


Luminescence And Structural Properties Of Silicon-Germanium Quantum Structures Fabricated By Ion Implantation, Matheus Coelho Adam Apr 2024

Luminescence And Structural Properties Of Silicon-Germanium Quantum Structures Fabricated By Ion Implantation, Matheus Coelho Adam

Electronic Thesis and Dissertation Repository

The advancement of semiconductor materials has played a crucial role in driving positive technological breakthroughs that impact humanity in numerous ways. The presence of defects significantly alters the physical properties of semiconductors, making their analysis essential in the fabrication of semiconductor devices. I presented a new method to quantify surface and near-surface defects in single crystal semiconductors. Epitaxially-grown silicon was measured by low energy electron diffraction (LEED) to obtain the surface Debye temperature (θD). The results showed the surface θD of bulk Si (001), 1.0 μm, and 0.6 μm Si on sapphire of 333 K, 299 K, …


Quantum Chaos, Integrability, And Hydrodynamics In Nonequilibrium Quantum Matter, Javier Lopez Piqueres Mar 2024

Quantum Chaos, Integrability, And Hydrodynamics In Nonequilibrium Quantum Matter, Javier Lopez Piqueres

Doctoral Dissertations

It is well-known that the Hilbert space of a quantum many-body system grows exponentially with the number of particles in the system. Drive the system out of equilibrium so that the degrees of freedom are now dynamic and the result is an extremely complicated problem. With that comes a vast landscape of new physics, which we are just recently starting to explore. In this proposal, we study the dynam- ics of two paradigmatic classes of quantum many-body systems: quantum chaotic and integrable systems. We leverage certain tools commonly employed in equilibrium many-body physics, as well as others tailored to the …


The Interplay Of Spin, Charge, And Heat: From Metal/Insulator Heterostructures To Perovskite Bilayers, Sam M. Bleser Mar 2024

The Interplay Of Spin, Charge, And Heat: From Metal/Insulator Heterostructures To Perovskite Bilayers, Sam M. Bleser

Electronic Theses and Dissertations

In this dissertation begin with an investigation of non-local spin transport in an amorphous germanium (a-Ge) sample via the inverse spin Hall effect (ISHE). In that study we show that commonly used techniques such as differential conductance and delta mode of a paired Keithley 6221/2182a for non-local resistance measurements can lead to false indicators of spin transport. Next, we turn out attention to a thickness dependent study in thermally-evaporated chromium (Cr) thin films on a bulk polycrystalline yttrium-iron-garnet (YIG) substrate. This project analyzed the spin transport in the Cr films versus thickness via the longitudinal spin Seebeck effect (LSSE). This …


Thermal, Electrical, And Spin Transport: Encompassing Low-Damping Ferromagnets And Antiferromagnetic/Ferromagnetic Heterostructures, Matthew Ryan Natale Mar 2024

Thermal, Electrical, And Spin Transport: Encompassing Low-Damping Ferromagnets And Antiferromagnetic/Ferromagnetic Heterostructures, Matthew Ryan Natale

Electronic Theses and Dissertations

Continuing technological advancements bring forth escalating challenges in global energy consumption and subsequent power dissipation, posing significant economic and environmental concerns. In response to these difficulties, the fields of thermoelectrics, spintronics, and spincaloritronics emerge as contemporary solutions, each presenting unique advantages. Thermoelectric devices, based on the Seebeck effect, other a passive, carbon-free energy generating solution from waste heat. Although current thermoelectric technology encounters hurdles in achieving optimal efficiencies without intricate designs or complex materials engineering, recently research into low-damping metallic ferromagnetic thin films have provided a new method to enhance spin wave lifetimes, thus contributing to thermoelectric voltage improvements. As …


Probing Central Spin Decoherence Dynamics Of Electronic Point Defects In Diamond And Silicon, Ethan Que Williams Feb 2024

Probing Central Spin Decoherence Dynamics Of Electronic Point Defects In Diamond And Silicon, Ethan Que Williams

Dartmouth College Ph.D Dissertations

Electron spins of point defects in diamond and silicon can exhibit long coherence times, making them attractive platforms for the physical implementation of qubits for quantum sensing and quantum computing. To realize these technologies, it is essential to understand the mechanisms that limit their coherence. Decoherence of these systems is well described by the central spin model, wherein the central electron spin weakly interacts with numerous electron and nuclear spins in its environment. The dynamics of the resultant dephasing can be probed with pulse electron paramagnetic resonance (pEPR) experiments.

Using a 2.5 GHz pEPR spectrometer built in-house, we performed multi-pulse …


Exciton Dynamics, Interaction, And Transport In Monolayers Of Transition Metal Dichalcogenides, Saroj Chand Feb 2024

Exciton Dynamics, Interaction, And Transport In Monolayers Of Transition Metal Dichalcogenides, Saroj Chand

Dissertations, Theses, and Capstone Projects

Monolayers Transition metal dichalcogenides (TMDs) have attracted much attention in recent years due to their promising optical and electronic properties for applications in optoelectronic devices. The rich multivalley band structure and sizable spin-orbit coupling in monolayer TMDs result in several optically bright and dark excitonic states with different spin and valley configurations. In the proposed works, we have developed experimental techniques and theoretical models to study the dynamics, interactions, and transport of both dark and bright excitons.

In W-based monolayers of TMDs, the momentum dark exciton cannot typically recombine optically, but they represent the lowest excitonic state of the system …


Non-Hermitian Physics Achieved Via Non-Local Gilbert Damping, Trevor Joshua Macintosh Jan 2024

Non-Hermitian Physics Achieved Via Non-Local Gilbert Damping, Trevor Joshua Macintosh

Electronic Theses and Dissertations

In this thesis, we study a simple model for a ferromagnet starting with Heisenberg exchange interaction including the effects of dissipation. Gilbert damping is consid- ered and generalized from an on-site term to include non-local damping interactions between neighbouring spins. The strength of the damping interaction between neigh- bours can be tuned individually to provide the freedom to change the parameters of the system and explore the range of possible non-Hermitian behaviours. We consider the example of a honeycomb lattice ferromagnet featuring Dirac cones and two sub- lattices and analyse the resulting spectra and eigenstates. Under periodic boundary conditions, we …


Synthesis And Characterization Of Quantum Materials, Yunsheng Qiu Jan 2024

Synthesis And Characterization Of Quantum Materials, Yunsheng Qiu

Doctoral Dissertations

"In this study, attempts were made to grow quantum materials that have recently undergone a profound change of perspective. These materials are involved in intricate macroscopic properties rooted in the subtle nature of quantum physics. To explore our understanding of quantum materials, this study includes three projects: Magnetic Topological Insulators, Topological Superconductors, and high-temperature superconductors.

A Cr-doped Sb2Te3 is added to the category for the magnetic topological insulators project. Their transport properties are studied, and the origin of ferromagnetism is studied. Anomalous Hall effect is observed in the Hall measurements, and serval factors (cooling rate, dopant deficiency) …


Photoluminescence Of Beryllium-Related Defects In Gallium Nitride, Mykhailo Vorobiov, Mykhailo Vorobiov Jan 2024

Photoluminescence Of Beryllium-Related Defects In Gallium Nitride, Mykhailo Vorobiov, Mykhailo Vorobiov

Theses and Dissertations

This study explores the potential of beryllium (Be) as an alternative dopant to magnesium (Mg) for achieving higher hole concentrations in gallium nitride (GaN). Despite Mg prominence as an acceptor in optoelectronic and high-power devices, its deep acceptor level at 0.22 eV above the valence band limits its effectiveness. By examining Be, this research aims to pave the way to overcoming these limitations and extend the findings to aluminum nitride and aluminum gallium nitride (AlGaN) alloy. Key contributions of this work include. i)Identification of three Be-related luminescence bands in GaN through photoluminescence spectroscopy, improving the understanding needed for further material …


Exploring Crystal Polymorphism In Additive-Assisted Chemical Vapor-Deposited Transition Metal Chalcogenides And Oxides, Lawrence Kirimi Mubwika Jan 2024

Exploring Crystal Polymorphism In Additive-Assisted Chemical Vapor-Deposited Transition Metal Chalcogenides And Oxides, Lawrence Kirimi Mubwika

Graduate Theses, Dissertations, and Problem Reports

Crystal polymorphism is a phenomenon in which compounds with the same chemical formula can be crystallized into different crystal structures. This phenomenon can be observed in elemental materials, such as diamond and graphite, as well as in compounds, such as the trigonal (1H) or octahedral (1T) prismatic MoS2. Crystals can also exhibit polytypism by stacking different polymorphs in a certain order, with the stacking sequence determining the variation between polytypes. Although all polymorphs and polytypes have the same chemical composition, each polymorph and polytype possesses unique electronic and physical properties.

This study explores the additive-assisted chemical vapor deposition …


Modeling Lithographic Quantum Dots And Donors For Quantum Computation And Simulation, Mitchell Ian Brickson Dec 2023

Modeling Lithographic Quantum Dots And Donors For Quantum Computation And Simulation, Mitchell Ian Brickson

Physics & Astronomy ETDs

Our first focus is on few-hole quantum dots in germanium. We use discontinous Galerkin methods to discretize and solve the equations of a highly detailed k·p model that describes these systems, enabling a better understanding of experimental magnetospectroscopy results. We confirm the expected anisotropy of single-hole g-factors and describe mechanisms by which different orbital states have different g-factors. Building on this, we show that the g-factors in Ge holes are suciently sensitive to details of the device electrostatics that magnetospectroscopy data can be used to make a prediction of the underlying confinement potential. The second focus is on designing quantum …


Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella Dec 2023

Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella

Doctoral Dissertations

Glasses are ubiquitous in daily life and have unique properties which are a consequence of the underlying disordered structure. By understanding the fundamental processes that govern these properties, we can modify glasses for desired applications. Key to understanding the structure-dynamics relationship in glasses is the variety of relaxation processes that exist below the glass transition temperature. Though these relaxations are well characterized with macroscopic experimental techniques, the microscopic nature of these relaxations is difficult to elucidate with experimental tools due to the requirements of timescale and spatial resolution. There remain many questions regarding the microscopic nature of relaxation in glass …


Experiments With Monopoles, Rings And Knots In Spinor Bose-Einstein Condensates, Alina A. Blinova Nov 2023

Experiments With Monopoles, Rings And Knots In Spinor Bose-Einstein Condensates, Alina A. Blinova

Doctoral Dissertations

Topological excitations are ubiquitous in nature, their charge being a naturally-quantized, conserved quantity that can exhibit particle-like behavior. Spinor Bose-Einstein condensates (BECs) are an exceptionally versatile system for the study and exploration of topological excitations. Between the spin-1 and spin-2 87Rb condensates there are seven possible broken-symmetry magnetic phases, with each one hosting unique opportunities for topological defects. We have created and observed several novel topological excitations in a spinor 87Rb BEC. In this dissertation I present and discuss three principal experimental findings: (1) The discovery of an Alice ring, or a half-quantum vortex ring, emerging from a …


Dynamics Of Spin And Charge Of Color Centers In Diamond Under Cryogenic Conditions, Richard G. Monge Sep 2023

Dynamics Of Spin And Charge Of Color Centers In Diamond Under Cryogenic Conditions, Richard G. Monge

Dissertations, Theses, and Capstone Projects

Individual quantum systems in semiconductors are currently the most sought-after platform for applications in quantum science. Most notably, the nitrogen-vacancy (NV) center in diamond features a defect deep within the electronic bandgap, making it amenable for precise manipulation to help pave the way to perform fundamental quantum physics experimentation. The NV center also offers long coherence times and versatile spin-dependent fluorescent properties, making it an ideal candidate for a nanoscale magnetometer. Furthermore, multi-color excitation offers deterministic charge state manipulation. While ambient operation has been key to their appeal, bringing NVs to cryogenic conditions opens new opportunities for alternate forms of …


The Role Of Nuclear Quantum Effects In Supercooled Water And Amorphous Ice, Ali H. Eltareb Sep 2023

The Role Of Nuclear Quantum Effects In Supercooled Water And Amorphous Ice, Ali H. Eltareb

Dissertations, Theses, and Capstone Projects

Water is one of the most important substances on Earth and plays a fundamental role in numerous scientific and engineering applications. Interestingly, water behaves much differently than other liquids. For example, water shows an anomalous density maximum at 277 K, the solid phase (ice) is less denser than the liquid, and its thermodynamic response functions, such as the specific heat CP and isothermal compressibility κT, also increase anomalously upon cooling. In the glassy state, water can exist in two different forms, low-density and high-density amorphous ice (LDA and HDA). While water has been scrutinized for many centuries, …


Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh Sep 2023

Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh

Dissertations, Theses, and Capstone Projects

Strong light-matter coupling in solid state systems is an intriguing process that allows one to exploit the advantages of both light and matter. In this context, microcavities have become essential platforms for studying the strong coupling regime, where hybrid light-matter states known as exciton-polaritons form, leading to enhanced light matter interaction, modified material properties, and novel quantum phenomena. In this thesis, we explore the phenomenology of exciton-polaritons in strained TMD microcavities, 2D perovskites, fluorescent proteins and organic dyes encompassing thermalization, polariton lasing, and the observation of nonlinear effects.

Transition metal dichalcogenides (TMDs) have emerged as a remarkable class of two- …


Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park Aug 2023

Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park

Doctoral Dissertations

Multiferroic materials attract significant attention due to their potential utility in a broad range of device applications. The inclusion of heavy metal centers in these materials enhances their magnetoelectric properties, yielding fascinating physical phenomena such as the Dzyaloshinskii–Moriya interaction, nonreciprocal directional dichroism, enhancement of spin-phonon coupling, and spin-orbit-entangled ground states. This dissertation provides a comprehensive survey of magnetoelectric multiferroics containing heavy metal centers and explores spectroscopic techniques under extreme conditions. A microscopic examination of phase transitions, symmetry-breaking, and structure-property relationships enhances the fundamental understanding of coupling mechanisms.

In A2Mo3O8 (A = Fe, Zn, Ni, and Mn), we use optical spectroscopy …


Synthesis, Characterization, And Simulation Of Two-Dimensional Materials, Lawrence Hudy Aug 2023

Synthesis, Characterization, And Simulation Of Two-Dimensional Materials, Lawrence Hudy

Theses and Dissertations

ABSTRACT

SYNTHESIS, CHARACTERIZATION, AND SIMULATION OF TWO-DIMENSIONAL MATERIALS

by

Lawrence Hudy

The University of Wisconsin-Milwaukee, 2023Under the Supervision of Professor Michael Weinert

This dissertation focuses on my journey through many aspects of surface science leading to the first principles investigation of transition metal dichalcogenides studying the impact of defects, twist, and decreasing interlayer separation to probe their effect on the electronic properties of these materials. My journey started out learning many aspects of material science such as methods for material synthesis and characterization but later ended on simulation of material properties using density functional theory. In the first experiments, we …


Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan Aug 2023

Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan

All Dissertations

In this thesis, we discuss the existence of spin and charge currents in systems with broken spin inversion symmetry proportional to the magnitude square of the driving electric and thermal fields. This outcome is predicated on symmetry considerations in the momentum space, whereby the product between the current operator and the out-of-equilibrium distribution function has to be even.

First, we derive the second-order correction to the particle distribution function $\delta f^{(2)}$ in a semi-classical approximation, considering the local change in the equilibrium distribution function caused by external fields. Our approach departs significantly from the previous theory where $\delta f^{(2)}$ is …


Super-Resolution Microscopy With Color Centers In Diamond, Forrest A. Hubert Aug 2023

Super-Resolution Microscopy With Color Centers In Diamond, Forrest A. Hubert

Optical Science and Engineering ETDs

This dissertation explores the development and application of diamond color centers, specifically the silicon-vacancy (SiV) and nitrogen-vacancy (NV) centers, in super-resolution microscopy and magnetic imaging techniques. It demonstrates the potential of SiV centers as photostable fluorophores in stimulated emission depletion (STED) microscopy, with a resolution of approximately 90 nm. The research also presents a method for nanoscale magnetic microscopy using NV centers by combining charge state depletion (CSD) microscopy with optically detected magnetic resonance (ODMR) to image magnetic fields produced by 30 nm iron-oxide nanoparticles. The individual magnetic feature width reaches ~100 nm while resolving magnetic field patterns from nanoparticles …


Two-Dimensional Crystal Phases Of Graphene Monoxide & Interaction Of Lithium With Graphene Monoxide, Danylo Radevych Aug 2023

Two-Dimensional Crystal Phases Of Graphene Monoxide & Interaction Of Lithium With Graphene Monoxide, Danylo Radevych

Theses and Dissertations

This work explores the possible existence, properties, and potential applications of different polytypes of graphene monoxide (GmO) - two-dimensional crystalline monolayers composed of equal numbers of O and C atoms. In addition to previously experimentally discovered and theoretically modeled α phase, prediction and discovery of the second phase - β-GmO - is reported along with evaluation of six other possible phases. Structural parameters, electronic and mechanical properties of all the phases, including α-GmO, are determined using density functional calculations and compared. It is suggested that multiple phases of GmO can co-exist in the same composite, and developing a synthesis process …


Construction Of Zinc Oxide And Magnesium Oxide Heterostructures By Atomic Layer Deposition, Netra Sharma Aug 2023

Construction Of Zinc Oxide And Magnesium Oxide Heterostructures By Atomic Layer Deposition, Netra Sharma

Theses and Dissertations

Zinc oxide (ZnO) has gained wide technological interest due to its direct bandgap of ~3.37 eV and high exciton binding energy of ~60 meV and has exhibited promise for numerous electronics and opto-electronics applications. ZnO can also be alloyed with materials like magnesium oxide (MgO) to tailor the bandgap. Such heterostructures (Zn, Mg)O can be used in optoelectronic devices like quantum well lasers, photodetectors, etc.In this work, we studied the physical properties of zinc oxide (ZnO), magnesium oxide (MgO) and the heterostructures of zinc and magnesium oxide (Zn,Mg)O grown by atomic layer deposition (ALD) using a homemade viscous flow type …


Exploring Skyrmions Dynamics And Structure Using Neutron Scattering, W-L-Namila Chandula Liyanage Aug 2023

Exploring Skyrmions Dynamics And Structure Using Neutron Scattering, W-L-Namila Chandula Liyanage

Doctoral Dissertations

Magnetic skyrmions are topologically protected chiral spin textures with great potential for next-generation consumer technologies. These magnetic structures can be described as spins continuously wrapping into a closed coplanar loop, featuring a core and fencing perimeter with opposite out-of-plane orientations. While conventional depictions of magnetic skyrmions use a two-dimensional projection, recent research underscores the importance of their three-dimensional structure in determining their topology and stability. Magnetic skyrmions typically emerge just below the curie temperature of a magnetic material, creating what is known as a skyrmion pocket. In most materials the stability pocket is at low temperatures and finite fields, however …


Intercalation And High-Pressure Investigations Of Black Arsenic Phosphorus: Unraveling Material Transformations., Dinushika Vithanage Aug 2023

Intercalation And High-Pressure Investigations Of Black Arsenic Phosphorus: Unraveling Material Transformations., Dinushika Vithanage

Electronic Theses and Dissertations

Black arsenic phosphorus (b-AsyP1-y) alloys have emerged as intriguing materials within the realm of two-dimensional (2D) materials, following the discovery of black phosphorus (BP). These alloys possess capability to overcome major limitations of BP and exhibit potential for tunability and enhancement of properties making them promising materials for a wide range of applications, including lithium-ion batteries. Inspired by the intriguing findings obtained for BP, this research focuses on understanding the structural modifications that can be achieved in b-AsyP1-y alloys through the application of intercalation and high pressure. The initial phase of our investigation …


Thermal, Magnetic, And Electrical Properties Of Thin Films And Nanostructures: From Magnetic Insulators To Organic Thermoelectrics, Michael J. M. Roos Jun 2023

Thermal, Magnetic, And Electrical Properties Of Thin Films And Nanostructures: From Magnetic Insulators To Organic Thermoelectrics, Michael J. M. Roos

Electronic Theses and Dissertations

Modern fabrication and growth techniques allow for the development of increasingly smaller and more complex solid state structures, the characterization of which require highly specialized measurement platforms. In this dissertation I present the development of techniques and instrumentation used in magnetic, thermal, and electrical property measurements of thin films and nanostructures. The understanding of trapped-flux induced artifacts in SQUID magnetometry of large paramagnetic substrates allows for the resolution of increasingly small moments. Using these methods, the antiferromagnetic coupling of the interface between a Y3Fe5O12 film and Gd3Ga5O12substrate is quantitatively …


The Study Of Excitons In 2d Novel Materials And Their Van Der Waals Heterostructures In The Magnetic Field, Anastasia Spiridonova Jun 2023

The Study Of Excitons In 2d Novel Materials And Their Van Der Waals Heterostructures In The Magnetic Field, Anastasia Spiridonova

Dissertations, Theses, and Capstone Projects

This research focuses on the direct and indirect excitons in Rydberg states in monolayers, bilayers, and van der Waals heterostructures composed of 2D semiconductors in the presence of the external magnetic field. In our work, we report binding energies of direct and indirect excitons in Rydberg states, the energy contribution from the magnetic field to the binding energies of magnetoexcitons, and diamagnetic coefficients (DMCs) of magnetoexcitons.

We study isotropic materials: transition metal dichalcogenides, TMDCs (WSe2, WS2, MoSe2, MoS2), and Xenes (silicene, germanene, stanene), and anisotropic materials: phosphorene and transition metal trichalcogenides, TMTCs …


Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn May 2023

Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn

Dartmouth College Ph.D Dissertations

Recently, there has been an explosion of interest in re-imagining many-body quantum phenomena beyond equilibrium. One such effort has extended the symmetry-protected topological (SPT) phase classification of non-interacting fermions to driven and dissipative settings, uncovering novel topological phenomena that are not known to exist in equilibrium which may have wide-ranging applications in quantum science. Similar physics in non-interacting bosonic systems has remained elusive. Even at equilibrium, an "effective non-Hermiticity" intrinsic to bosonic Hamiltonians poses theoretical challenges. While this non-Hermiticity has been acknowledged, its implications have not been explored in-depth. Beyond this dynamical peculiarity, major roadblocks have arisen in the search …