Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Novel Nanostructured Rare-Earth-Free Magnetic Materials With High Energy Products, Bhaskar Das Aug 2013

Novel Nanostructured Rare-Earth-Free Magnetic Materials With High Energy Products, Bhaskar Das

B. Das

Novel nanostructured Zr2Co11-based magnetic materials are fabricated in a single step process using cluster-deposition method. The composition, atomic ordering, and spin structure are precisely controlled to achieve a substantial magnetic remanence and coercivity, as well as the highest energy product for non-rare-earth and Pt-free permanent-magnet alloys.


Hfco7-Based Rare-Earth-Free Permanent-Magnet Alloys, Bhaskar Das Jun 2013

Hfco7-Based Rare-Earth-Free Permanent-Magnet Alloys, Bhaskar Das

B. Das

This study presents the structural and magnetic properties of melt-spun HfCo7,HfCo7-xFex (0.25 ≤ × ≤ 1) and HfCo7Six(0.2 ≤ × ≤1.2) alloys. Appreciable permanent-magnet properties with a magnetocrystalline anisotropy of about 9.6-16.5 Mergs/cm3, a magnetic polarization Js ≈ 7.2-10.6 kG, and coercivities Hc = 0.5-3.0 kOe were obtained by varying the composition of these alloys. Structural analysis reveals that the positions of x-ray diffraction peaks of HfCo7 show good agreement with those corresponding to an orthorhombic structure having lattice parameters of about α = 4.719 Å, b = 4.278 Å, and c = 8.070 Å. Based on these results, a …


Vortex-Glass Phase Transition And Enhanced Flux Pinning In C 4+-Irradiated Bafe1.9ni0.1as2 Superconducting Single Crystals, M Shahbazi, X Wang, S Ghorbani, M Ionescu, Olga Shcherbakova, Frederick Wells, Alexey Pan, S Dou, K Choi Dec 2012

Vortex-Glass Phase Transition And Enhanced Flux Pinning In C 4+-Irradiated Bafe1.9ni0.1as2 Superconducting Single Crystals, M Shahbazi, X Wang, S Ghorbani, M Ionescu, Olga Shcherbakova, Frederick Wells, Alexey Pan, S Dou, K Choi

Frederick S Wells

We report the effects of C4+-irradiation on the superconducting properties of BaFe1.9Ni0.1As2 single crystal. The BaFe1.9Ni0.1As2 single crystal before and after C4+-irradiation was characterized by magnetic, magneto-transport and magneto-optical techniques over a wide range of magnetic fields (0-13 T) and temperatures (2-200 K). We demonstrate that the C 4+-irradiation significantly enhances the in-field critical current density (by a factor of up to 1.5 at 5 K) and induces enhanced flux jumping at 2 K, with only a small degradation (by 0.5 K) of the critical temperature, T c. The vortex phase diagram describing the evolution of the vortex-glass transition temperature …