Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Long-Term Simulations Of Beam-Beam Dynamics On Gpus, B. Terzić, K. Arumugam, R. Majeti, C. Cotnoir, M. Stefani, D. Ranjan, A. Godunov, V. Morozov, H. Zhang, F. Lin, Y. Roblin, E. Nissen, T. Satogata Jan 2017

Long-Term Simulations Of Beam-Beam Dynamics On Gpus, B. Terzić, K. Arumugam, R. Majeti, C. Cotnoir, M. Stefani, D. Ranjan, A. Godunov, V. Morozov, H. Zhang, F. Lin, Y. Roblin, E. Nissen, T. Satogata

Physics Faculty Publications

Future machines such as the electron-ion colliders (JLEIC), linac-ring machines (eRHIC) or LHeC are particularly sensitive to beam-beam effects. This is the limiting factor for long-term stability and high luminosity reach. The complexity of the non-linear dynamics makes it challenging to perform such simulations which require millions of turns. Until recently, most of the methods used linear approximations and/or tracking for a limited number of turns. We have developed a framework which exploits a massively parallel Graphical Processing Units (GPU) architecture to allow for tracking millions of turns in a sympletic way up to an arbitrary order and colliding them …


High-Fidelity Simulations Of Long-Term Beam-Beam Dynamics On Gpus, B. Terzić, K. Arumugam, M. Aturban, C. Cotnoir, A. Godunov, D. Ranjan, M. Stefani, M. Zubair, F. Lin, V. Morozov, Y. Roblin, H. Zhang Jan 2016

High-Fidelity Simulations Of Long-Term Beam-Beam Dynamics On Gpus, B. Terzić, K. Arumugam, M. Aturban, C. Cotnoir, A. Godunov, D. Ranjan, M. Stefani, M. Zubair, F. Lin, V. Morozov, Y. Roblin, H. Zhang

Physics Faculty Publications

Future machines such as the Electron Ion Collider (MEIC), linac-ring machines (eRHIC) or LHeC are particularly sensitive to beam-beam effects. This is the limiting factor for long-term stability and high luminosity reach. The complexity of the non-linear dynamics makes it challenging to perform such simulations typically requiring millions of turns. Until recently, most of the methods have involved using linear approximations and/or tracking for a limited number of turns. We have developed a framework which exploits a massively parallel Graphical Processing Units (GPU) architecture to allow for tracking millions of turns in a sympletic way up to an arbitrary order. …


High-Performance Simulations Of Coherent Synchrotron Radiation On Multicore Gpu And Cpu Platforms, B. Terzić, A. Godunov, K. Arumugam, D. Ranjan, M. Zubair Jan 2015

High-Performance Simulations Of Coherent Synchrotron Radiation On Multicore Gpu And Cpu Platforms, B. Terzić, A. Godunov, K. Arumugam, D. Ranjan, M. Zubair

Physics Faculty Publications

Coherent synchrotron radiation (CSR) is an effect of self-interaction of an electron bunch as it traverses a curved path. It can cause a significant emittance degradation and microbunching. We present a new high-performance 2D, particle-in-cell code which uses massively parallel multicore GPU/GPU platforms to alleviate computational bottlenecks. The code formulates the CSR problem from first principles by using the retarded scalar and vector potentials to compute the self-interaction fields. The speedup due to the parallel implementation on GPU/CPU platforms exceeds three orders of magnitude, thereby bringing a previously intractable problem within reach. The accuracy of the code is verified against …


An Itk Implementation Of A Physics-Based Non-Rigid Registration Method For Brain Deformation In Image Guided Neurosurgery, Yixun Liu, Andriy Kot, Fotis Drakopoulos, Chengjun Yao, Andriy Fedorov, Andinet Enquobahrie, Oliver Clatz, Nikos P. Chrisochoides Jan 2014

An Itk Implementation Of A Physics-Based Non-Rigid Registration Method For Brain Deformation In Image Guided Neurosurgery, Yixun Liu, Andriy Kot, Fotis Drakopoulos, Chengjun Yao, Andriy Fedorov, Andinet Enquobahrie, Oliver Clatz, Nikos P. Chrisochoides

Electrical & Computer Engineering Faculty Publications

As part of the ITK v4 project efforts, we have developed ITK filters for physics-based non-rigid registration (PBNRR), which satisfies the following requirements: account for tissue properties in the registration, improve accuracy compared to rigid registration, and reduce execution time using GPU and multi-core accelerators. The implementation has three main components: (1) Feature Point Selection, (2) Block Matching (mapped to both multi-core and GPU processors), and (3) a Robust Finite Element Solver. The use of multi-core and GPU accelerators in ITK v4 provides substantial performance improvements. For example, for the non-rigid registration of brain MRIs, the performance of the block …


Gpu Accelerated Long-Term Simulations Of Beam-Beam Effects In Colliders, B. Terzić, V. Morozov, Y. Roblin, F. Lin, H. Zhang, M. Aturban, D. Ranjan, M. Zubair Jan 2014

Gpu Accelerated Long-Term Simulations Of Beam-Beam Effects In Colliders, B. Terzić, V. Morozov, Y. Roblin, F. Lin, H. Zhang, M. Aturban, D. Ranjan, M. Zubair

Computer Science Faculty Publications

We present an update on the development of the new code for long-term simulation of beam-beam effects in particle colliders. The underlying physical model relies on a matrix-based arbitrary-order particle tracking (including a symplectic option) for beam transport and the generalized Bassetti-Erskine approximation for beam-beam interaction. The computations are accelerated through a parallel implementation on a hybrid GPU/CPU platform. With the new code, previously computationally prohibitive long-term simulations become tractable. The new code will be used to model the proposed Medium-energy Electron-Ion Collider (MEIC) at Jefferson Lab.


Extracting The Structure And Conformations Of Biological Entities From Large Datasets, Ali Dashti Dec 2013

Extracting The Structure And Conformations Of Biological Entities From Large Datasets, Ali Dashti

Theses and Dissertations

In biology, structure determines function, which often proceeds via changes in conformation. Efficient means for determining structure exist, but mapping conformations continue to present a serious challenge. Single-particles approaches, such as cryogenic electron microscopy (cryo-EM) and emerging "diffract & destroy" X-ray techniques are, in principle, ideally positioned to overcome these challenges. But the algorithmic ability to extract information from large heterogeneous datasets consisting of "unsorted" snapshots - each emanating from an unknown orientation of an object in an unknown conformation - remains elusive.

It is the objective of this thesis to describe and validate a powerful suite of manifold-based algorithms …


Study Of Vortex Ring Dynamics In The Nonlinear Schrödinger Equation Utilizing Gpu-Accelerated High-Order Compact Numerical Integrators, Ronald Meyer Caplan Jan 2012

Study Of Vortex Ring Dynamics In The Nonlinear Schrödinger Equation Utilizing Gpu-Accelerated High-Order Compact Numerical Integrators, Ronald Meyer Caplan

CGU Theses & Dissertations

We numerically study the dynamics and interactions of vortex rings in the nonlinear Schrödinger equation (NLSE). Single ring dynamics for both bright and dark vortex rings are explored including their traverse velocity, stability, and perturbations resulting in quadrupole oscillations. Multi-ring dynamics of dark vortex rings are investigated, including scattering and merging of two colliding rings, leapfrogging interactions of co-traveling rings, as well as co-moving steady-state multi-ring ensembles. Simulations of choreographed multi-ring setups are also performed, leading to intriguing interaction dynamics.

Due to the inherent lack of a close form solution for vortex rings and the dimensionality where they live, efficient …