Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

University of Nebraska - Lincoln

Stephen Ducharme Publications

Ferroelectricity

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

The Promise Of Piezoelectric Polymers, Timothy D. Usher, Kimberley R. Cousins, Renwu Zhang, Stephen Ducharme Jan 2018

The Promise Of Piezoelectric Polymers, Timothy D. Usher, Kimberley R. Cousins, Renwu Zhang, Stephen Ducharme

Stephen Ducharme Publications

Recent advances provide new opportunities in the field of polymer piezoelectric materials. Piezoelectric materials provide unique insights to the fundamental understanding of the solid state. In addition, piezoelectric materials have a wide range of applications, representing billions of dollars of commercial applications. However, inorganic piezoelectric materials have limitations that polymer ferroelectric materials can overcome, if certain challenges can be addressed. This mini-review is a practical summary of the current research and future directions in the investigation and application of piezoelectric materials with an emphasis on polymeric piezoelectric materials. We will assume that the reader is well versed in the subject …


Fabrication Of Diisopropylammonium Bromide Aligned Microcrystals With In-Plane Uniaxial Polarization, Shashi Poddar, Haidong Lu, Jingfeng Song, Om Goit, Shah Valloppilly, Alexei Gruverman, Stephen Ducharme Jan 2016

Fabrication Of Diisopropylammonium Bromide Aligned Microcrystals With In-Plane Uniaxial Polarization, Shashi Poddar, Haidong Lu, Jingfeng Song, Om Goit, Shah Valloppilly, Alexei Gruverman, Stephen Ducharme

Stephen Ducharme Publications

Textured arrays of ferroelectric microcrystals of diisopropylammonium bromide were grown from solution at room temperature onto silicon substrates and studied by means of x-ray diffraction, atomic force microscopy, electron microscopy, and piezoresponse force microscopy. The needle-shaped crystals had dimensions of approximately 50 μm × 5 μm in the plane and were approximately 200 nm thick, where the dimensions and arrangement were influenced by growth conditions. The observations suggest an Ostwald ripening mechanism of the microcrystal growth. The crystals had the structure of the ferroelectric phase, where the polarization axis was in-plane and parallel to the long axis of …