Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

On The Exact Helium Wave Function Expansion, Ii, An Exponential Modulated Form, Carl W. David Jan 2024

On The Exact Helium Wave Function Expansion, Ii, An Exponential Modulated Form, Carl W. David

Chemistry Education Materials

A 11S wave function’s expansion for 2 electron atoms and ions is proposed employing an appropriate exponential factor and Fock’s logarithmic terms. The leading coefficient’s are presented.


H-Atom Ladder Operator Revisited, Carl W. David Aug 2020

H-Atom Ladder Operator Revisited, Carl W. David

Chemistry Education Materials

An error laden note (Am. J. Phys., 34, 984,(1966)) concerning the ladder operator solution to the hydrogen atom electronic energy levels is corrected.


Changes In The Scattering Phase Shifts For Partial Waves Of Ultracold Particles At Different Energies, Kaaviyan Faezi May 2020

Changes In The Scattering Phase Shifts For Partial Waves Of Ultracold Particles At Different Energies, Kaaviyan Faezi

Honors Scholar Theses

At low energies, scattering phase shifts, the difference in phases between the incoming and outgoing spherical waves in scattering, for different partial waves follow a similar pattern. The phase shift curves, which are a function of the angular momentum quantum number for different scattering energy, obtain resonances after reaching their maxima, and as energy is increased, these resonances become smaller and eventually disappear. Using numerical methods involving the use of Chebyshev polynomials, we solve the wave equation for a scattering potential to obtain the radial equation. From the radial equation we then find the scattering phase shift for a particular …


Infra-Red Microwave Spectra, Overtones, Degeneracy And Thermal Populations All In One Diagram, Carl W. David Aug 2018

Infra-Red Microwave Spectra, Overtones, Degeneracy And Thermal Populations All In One Diagram, Carl W. David

Chemistry Education Materials

An old drawing, which had an error in it, is re-presented (corrected) for understanding the relationships in diatomic vibrational-rotational interactions at the introductory level.


Ultracold Trimer Ion Formation Of Rb And K, Michael Cantara Apr 2016

Ultracold Trimer Ion Formation Of Rb And K, Michael Cantara

University Scholar Projects

The cooling of molecules into the ultracold regime allows for high resolution laser spectroscopy that reveals their complex rotational and vibrational structure. As the temperature is lowered towards absolute zero, the kinetic energy of the particles approaches zero, and therefore the Doppler shift approaches zero. With the Doppler shift negligibly small, spectral resolution is now primarily limited by the natural linewidth of the molecular peaks. Further, ultracold temperatures make possible the production of atoms or molecules that will reside in the lowest few states of the system. The high population in a few select states provides stronger and less congested …


Plotting The Van Der Waals Fluid In Pseudo-3d And The Maxwell Construction, Carl W. David Jul 2015

Plotting The Van Der Waals Fluid In Pseudo-3d And The Maxwell Construction, Carl W. David

Chemistry Education Materials

The van der Waals (from his thesis of 1873) equation is a cubic in the molar volume. Plotting the equation in pseudo 3 dimensions is quite simple to do, but including tie lines is quite difficult. Employing the solutions to the cubic van der Waals equation, the tie lines are readily available and can be easily incorporated into the aforementioned 3D plots.


Monte Carlo Simulations Of Atmospheric Loss By Stellar Winds From Exoplanets, Daniel P. Violette May 2014

Monte Carlo Simulations Of Atmospheric Loss By Stellar Winds From Exoplanets, Daniel P. Violette

University Scholar Projects

Hot Jupiters are a class of extra-solar planets. Massive gas giants on the same size scale as Jupiter, they orbit their host stars closely. This proximity results in large stellar winds capable of stripping away a planet’s atmosphere. Developing a more complete understanding of atmospheric mass loss and evolution in planetary bodies is critical, and Hot Jupiter systems are accessible analogues.

This project will seek to create a computational model capable of estimating mass loss rates due to stellar winds. A Monte Carlo method is utilized to take an ensemble of single, high-energy energetic neutral particles, produced by kilo-electronvolt stellar …


Monte Carlo Simulations Of Atmospheric Loss By Stellar Winds From Exoplanets, Daniel Violette May 2014

Monte Carlo Simulations Of Atmospheric Loss By Stellar Winds From Exoplanets, Daniel Violette

Honors Scholar Theses

Hot Jupiters are a class of extra-solar planets. Massive gas giants on the same size scale as Jupiter, they orbit their host stars closely. This proximity results in large stellar winds capable of stripping away a planet’s atmosphere. Developing a more complete understanding of atmospheric mass loss and evolution in planetary bodies is critical, and Hot Jupiter systems are accessible analogues.

This project will seek to create a computational model capable of estimating mass loss rates due to stellar winds. A Monte Carlo method is utilized to take an ensemble of single, high-energy energetic neutral particles, produced by kilo-electronvolt stellar …


Numerical Simulations Of Chirped Excitation, Benjamin Iannitelli May 2012

Numerical Simulations Of Chirped Excitation, Benjamin Iannitelli

Honors Scholar Theses

In this project I developed a general method of finding the optimal laser excitation for an ensemble of two-level atoms with the primary goal of exciting as many atoms as possible, as quickly as possible, for as long as possible, in order of decreasing priority. Specifically, I simulated the laser excitation of a collection of Rubidium-87 atoms from (n=5, L=0, S=1/2, J=1/2) to (n=5, L=1, S=1/2, J=3/2), by finding numerical solutions to the optical Bloch equations. I optimized the parameters of a linear chirp paired with a Gaussian intensity pulse first neglecting and then including spontaneous emission, and then for …


Design Of Electronics For A High-Energy Photon Tagger For The Gluex Experiment, Mitchell "Woody" Underwood May 2010

Design Of Electronics For A High-Energy Photon Tagger For The Gluex Experiment, Mitchell "Woody" Underwood

Honors Scholar Theses

In quantum chromodynamics (QCD), quarks and antiquarks are held together inside hadrons by the nuclear strong force, which is mediated by exchange particles known as gluons. The simplest type of hadron, the meson, consists of a single quark and a single antiquark bound by a gluonic field. The flux-tube model of QCD says that this gluonic field forms a tube of color-electric field lines between the quark and the antiquark which can under the right conditions be made to vibrate. Such mesons with excited glue are called hybrid mesons.

GlueX is a high-energy nuclear physics experiment which will study hybrid …


A Review Of Helium Hamiltonians, Carl W. David Jan 2009

A Review Of Helium Hamiltonians, Carl W. David

Chemistry Education Materials

Helium Hamiltonian transformations are discussed in extreme detail.