Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Feedback Induced Magnetic Phases In Binary Bose-Einstein Condensates, Hilary M. Hurst, Shangjie Guo, I. B. Spielman Dec 2020

Feedback Induced Magnetic Phases In Binary Bose-Einstein Condensates, Hilary M. Hurst, Shangjie Guo, I. B. Spielman

Faculty Research, Scholarly, and Creative Activity

Weak measurement in tandem with real-time feedback control is a new route toward engineering novel non-equilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of multicomponent Bose-Einstein condensates (BECs) using backaction-limited weak measurements in conjunction with spatially resolved feedback. Feedback in the form of a single-particle potential can introduce effective interactions that enter into the stochastic equation governing system dynamics. The effective interactions are tunable and can be made analogous to Feshbach resonances -- spin-independent and spin-dependent -- but without changing atomic scattering parameters. Feedback cooling prevents runaway heating due to measurement backaction and we present …


Quantum Control With Spinor Bose-Einstein Condensates, Hilary M. Hurst Feb 2020

Quantum Control With Spinor Bose-Einstein Condensates, Hilary M. Hurst

Faculty Research, Scholarly, and Creative Activity

Understanding and controlling many-body quantum systems in noisy environments is paramount to developing robust quantum technologies. An external environment can be thought of as a measurement reservoir which extracts information about the quantum system. Cold atoms are well suited to examine system-environment interaction via weak (i.e. minimally destructive) measurement techniques, wherein the measurement probe acts as the environment and also provides a noisy record of system dynamics. The measurement record can then be used in a feedback scheme, opening the door to real time control of quantum gases. In this talk I discuss our theoretical proposal to use weak measurement …


Measurement-Induced Dynamics And Stabilization Of Spinor-Condensate Domain Walls, Hilary M. Hurst, I. B. Spielman May 2019

Measurement-Induced Dynamics And Stabilization Of Spinor-Condensate Domain Walls, Hilary M. Hurst, I. B. Spielman

Faculty Research, Scholarly, and Creative Activity

Weakly measuring many-body systems and allowing for feedback in real-time can simultaneously create and measure new phenomena in strongly correlated quantum systems. We study the dynamics of a continuously measured two-component Bose-Einstein condensate (BEC) potentially containing a domain wall, and focus on the trade-off between usable information obtained from measurement and quantum backaction. Each weakly measured system yields a measurement record from which we extract real-time dynamics of the domain wall. We show that quantum backaction due to measurement causes two primary effects: domain wall diffusion and overall heating. The system dynamics and signal-to-noise ratio depend on the choice of …


Kinetic Theory Of Dark Solitons With Tunable Friction, Hilary M. Hurst, Dimitry K. Efimkin, I. B. Spielman, Victor Galitski May 2017

Kinetic Theory Of Dark Solitons With Tunable Friction, Hilary M. Hurst, Dimitry K. Efimkin, I. B. Spielman, Victor Galitski

Faculty Research, Scholarly, and Creative Activity

We study controllable friction in a system consisting of a dark soliton in a one-dimensional Bose-Einstein condensate coupled to a non-interacting Fermi gas. The fermions act as impurity atoms, not part of the original condensate, that scatter off of the soliton. We study semi-classical dynamics of the dark soliton, a particle-like object with negative mass, and calculate its friction coefficient. Surprisingly, it depends periodically on the ratio of interspecies (impurity-condensate) to intraspecies (condensate-condensate) interaction strengths. By tuning this ratio, one can access a regime where the friction coefficient vanishes. We develop a general theory of stochastic dynamics for negative mass …


Real-Space Mean-Field Theory Of A Spin-1 Bose Gas In Synthetic Dimensions, Hilary M. Hurst, Justin H. Wilson, J. H. Pixley, I. B. Spielman, Stefan S. Natu Dec 2016

Real-Space Mean-Field Theory Of A Spin-1 Bose Gas In Synthetic Dimensions, Hilary M. Hurst, Justin H. Wilson, J. H. Pixley, I. B. Spielman, Stefan S. Natu

Faculty Research, Scholarly, and Creative Activity

The internal degrees of freedom provided by ultracold atoms give a route for realizing higher dimensional physics in systems with limited spatial dimensions. Non-spatial degrees of freedom in these systems are dubbed "synthetic dimensions". This connection is useful from an experimental standpoint but complicated by the fact that interactions alter the condensate ground state. Here we use the Gross-Pitaevskii equation to study ground state properties of a spin-1 Bose gas under the combined influence of an optical lattice, spin-orbit coupling, and interactions at the mean field level. The associated phases depend on the sign of the spin-dependent interaction parameter and …


Magnetic Correlations And Pairing In The 1/5-Depleted Square Lattice Hubbard Model, Ehsan Khatami, Rajiv R.P. Singh, Warren E. Pickett, Richard T. Scalettar Sep 2014

Magnetic Correlations And Pairing In The 1/5-Depleted Square Lattice Hubbard Model, Ehsan Khatami, Rajiv R.P. Singh, Warren E. Pickett, Richard T. Scalettar

Faculty Publications

We study the single-orbital Hubbard model on the 1/5-depleted square-lattice geometry, which arises in such diverse systems as the spin-gap magnetic insulator CaV4O9 and ordered-vacancy iron selenides, presenting new issues regarding the origin of both magnetic ordering and superconductivity in these materials. We find a rich phase diagram that includes a plaquette singlet phase, a dimer singlet phase, a Néel and a block-spin antiferromagnetic phase, and stripe phases. Quantum Monte Carlo simulations show that the dominant pairing correlations at half filling change character from d wave in the plaquette phase to extended s wave upon transition to the Néel phase. …