Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physics

Chasing Transients: Constructing Local Galaxy Catalogs For Electromagnetic Follow-Up Of Gravitational Wave Events, Chaoran Zhang Dec 2022

Chasing Transients: Constructing Local Galaxy Catalogs For Electromagnetic Follow-Up Of Gravitational Wave Events, Chaoran Zhang

Theses and Dissertations

Gravitational waves (GWs) provide a new window for observing the universe which is not possible using traditional electromagnetic (EM) wave astronomy. The coalescence of compact object binaries, such as black holes (BHs) and neutron stars (NSs) generates “loud" GW signals that are detectable by the LIGO-Virgo-KAGRA (LVK) GW Observa- tory. If the binary contains at least one NS, there is a possibility that an observable EM counterpart will be launched during and/or after the merger. The first joint detection of GW radiation (GW170817) and its EM counterpart (AT 2017gfo) greatly extended our understanding of the universe in many fields, such …


Searching For Gravitational Wave Associations With High-Energy Astrophysical Transients, Brandon Joseph Piotrzkowski Aug 2022

Searching For Gravitational Wave Associations With High-Energy Astrophysical Transients, Brandon Joseph Piotrzkowski

Theses and Dissertations

Gravitational waves (GW) have become an invaluable tool in modern astronomy, especiallyin conjunction with other astronomical observations. GWs are created in highly dynamical systems such as compact binary coalescences (CBC) which are comprised of black holes and/or neutron stars. The Laser Interferometer Gravitational Wave Observatory (LIGO), Virgo Observatory, and KAGRA have now collectively identified almost a hundred of these events. GWs have also been predicted to come from core collapse supernovae. Both of these types of systems have been shown to produce other detectable transients, such as gamma- ray bursts (GRB) and neutrino bursts. Observations of the same astrophysical system …


Data-Driven Population Inference From Gravitational-Wave Sources And Electromagnetic Counterparts, Siddharth Mohite Aug 2022

Data-Driven Population Inference From Gravitational-Wave Sources And Electromagnetic Counterparts, Siddharth Mohite

Theses and Dissertations

Gravitational-wave (GW) astronomy has presented an unprecedented way to view the universe and study populations of astrophysical objects such as merging compact binaries containing black holes (BHs) and neutron stars (NSs). With the latest catalog of observations detected by the Advanced LIGO-Virgo detector network, recent analyses are placing interesting constraints on the population of BHs and NSs in these binaries. In particular, we are learning a great deal about how these binaries are distributed as a function of their masses. Another aspect of GW astronomy that has the potential to provide insights into fundamental physics is the multi-messenger follow up …


Gravitational Wave Timing Residual Models For Pulsar Timing Experiments, Casey Mcgrath Aug 2021

Gravitational Wave Timing Residual Models For Pulsar Timing Experiments, Casey Mcgrath

Theses and Dissertations

The ability to detect gravitational waves now gives scientists and astronomers a new way in which they can study the universe. So far, the scientific collaboration LIGO has been successful in detecting binary black hole and binary neutron star mergers. These types of sources produce gravitational waves with frequencies of the order hertz to millihertz. But there do exist other theoretical sources which would produce gravitational waves in different parts of the frequency spectrum. Of these are the theoretical mergers of supermassive black hole binaries (SMBHBs), which could occur upon the merging of two galaxies with supermassive black holes at …


Studies In Gravitational-Wave Astronomy And Tests Of General Relativity, Hong Qi May 2018

Studies In Gravitational-Wave Astronomy And Tests Of General Relativity, Hong Qi

Theses and Dissertations

Modern astronomical data sets provide the opportunity to test our physical theories of the Universe at unprecedented levels of accuracy. This dissertation examines approaches to testing gravitational theories using a) observations of stars orbiting the center of the Milky Way; b) observations of the pulsations of Cepheid variable stars in dwarf galaxies; and c) gravitational-wave observations of compact binary mergers.

Observations of stars orbiting the center of the Milky Way have been used to infer the mass of the putative black hole that exists there. I discuss how well present and future measurements of stellar orbits can constrain the black …


Galactic Outflows And Their Correlations With Galaxy Properties At 0.8 < Z < 1.6, Lindsey Whiting Aug 2017

Galactic Outflows And Their Correlations With Galaxy Properties At 0.8 < Z < 1.6, Lindsey Whiting

Theses and Dissertations

Out

ows have been shown to be ubiquitous in galaxies between z = 1 and z=2,

and many models and observations have attempted to correlate the absorption line

properties of these out

ows with morphological characteristics of their host galaxies.

In this study, we examined the spectra of 71 galaxies with redshifts 1< z<2, paying

particular attention to the FeII and MgII absorption lines. We plotted the equivalent

width, velocity, and maximum velocity of the absorption features against various

physical properties of the galaxies, obtained from catalogues created by Skelton et

al., (2014) and van der Wel et al., (2012). We conrmed …


Modeling Gravitational-Wave Sources For Pulsar Timing Arrays, Joseph Simon Aug 2017

Modeling Gravitational-Wave Sources For Pulsar Timing Arrays, Joseph Simon

Theses and Dissertations

The recent direct detections of gravitational waves (GWs) from merging black holes by the Laser Interferometer Gravitational-wave Observatory (LIGO) marks the beginning of the era of GW astronomy and promises to transform fundamental physics. In the coming years, there is hope for detections across the mass scale of binary black holes.

Pulsar Timing Arrays (PTAs) are galactic-scale low-frequency (nHz - $\mu$Hz) GW observatories, which aim to directly detect GWs from binary supermassive black holes (SMBHs) ($\gtrsim 10^{7} \msun$). The frequency and black hole mass range that PTAs are sensitive to is orders of magnitude different from those LIGO is observing, …


Monsters In The Dark: High Energy Signatures Of Black Hole Formation With Multimessenger Astronomy, Alexander L. Urban May 2016

Monsters In The Dark: High Energy Signatures Of Black Hole Formation With Multimessenger Astronomy, Alexander L. Urban

Theses and Dissertations

When two compact objects inspiral and violently merge it is a rare cosmic event, producing fantastically “luminous” gravitational wave emission. It is also fleeting, staying in the Laser Interferometer Gravitational-wave Observatory’s (LIGO) sensitive band only for somewhere between tenths of a second and several tens of minutes. However, when there is at least one neutron star, disk formation during the merger may power a slew of potentially detectable electromagnetic counterparts, such as short gamma-ray bursts (GRBs), afterglows, and kilonovae. These explosions span the full electromagnetic spectrum and are expected within seconds, hours or days of the merger event. To learn …


Gravitational Waves From Rotating Neutron Stars And Compact Binary Systems, Leslie Wade May 2015

Gravitational Waves From Rotating Neutron Stars And Compact Binary Systems, Leslie Wade

Theses and Dissertations

It is widely anticipated that the first direct detections of gravitational waves will be made by advanced gravitational-wave detectors, such as the two Laser Interferometer Gravitational-wave Observatories (LIGO) and the Virgo interferometer. In preparation for the advanced detector era, I have worked on both detection and post-detection efforts involving two gravitational wave sources: isolated rotating neutron stars (NSs) and compact binary coalescences (CBCs). My dissertation includes three main research projects: 1) a population synthesis study assessing the detectability of isolated NSs, 2) a CBC search for intermediate-mass black-hole binaries (IMBHBs), and 3) new methods for directly measuring the neutron-star (NS) …


Gravitational-Wave Science With The Laser Interferometer Gravitational-Wave Observatory, Madeline Wade May 2015

Gravitational-Wave Science With The Laser Interferometer Gravitational-Wave Observatory, Madeline Wade

Theses and Dissertations

Gravitational-waves, as predicted by Einstein’s theory of general relativity, are oscillations of spacetime caused by the motion of masses. Although not yet directly detected, there is strong evidence for the existence of gravitational-waves. Detectable gravitational waves will come from dramatic astrophysical events, such as supernova explosions and collisions of black holes. The Laser Interferometer Gravitational-wave Observatory (LIGO) is a network of detectors designed to make the first direct detection of gravitational waves. The upgraded version of LIGO, Advanced LIGO (aLIGO), will offer a dramatic improvement in sensitivity that will virtually guarantee detections.

Gravitational-wave detections will not only illuminate mysterious astrophysical …


Topics In Broadband Gravitational-Wave Astronomy, Sydney Joanne Chamberlin May 2015

Topics In Broadband Gravitational-Wave Astronomy, Sydney Joanne Chamberlin

Theses and Dissertations

The direct detection of gravitational waves promises to open a new observational window onto the universe, and a number of large scale efforts are underway worldwide to make such a detection a reality. In this work, we attack some of the current problems in gravitational-wave detection over a wide range of frequencies.

In the first part of this work, low frequency gravitational-wave detection is considered using pulsar timing arrays (PTAs). PTAs are a promising tool for probing the universe through gravitational radiation. Supermassive black hole binaries (SMBHBs), cosmic strings, relic gravitational waves from inflation, and first order phase transitions in …


Self-Force On Accelerated Particles, Thomas Michael Linz May 2015

Self-Force On Accelerated Particles, Thomas Michael Linz

Theses and Dissertations

The likelihood that gravitational waves from stellar-size black holes spiraling into a supermassive black hole would be detectable by a space based gravitational wave observatory has spurred the interest in studying the extreme mass-ratio inspiral (EMRI) problem and black hole perturbation theory (BHP). In this approach, the smaller black hole is treated as a point particle and its trajectory deviates from a geodesic due to the interaction with its own field. This interaction is known as the gravitational self-force, and it includes both a damping force, commonly known as radiation reaction, as well as a conservative force. The computation of …


Searching For Gravitational Waves Using Pulsar Timing Arrays, Justin Ellis Aug 2014

Searching For Gravitational Waves Using Pulsar Timing Arrays, Justin Ellis

Theses and Dissertations

Gravitational Waves (GWs) are tiny ripples in the fabric of spacetime predicted by Einstein's theory of General Relativity. Pulsar timing arrays (PTAs) offer a unique opportunity to detect low frequency GWs in the near future. Such a detection would be complementary to both LISA and LIGO GW efforts. In this frequency band, the expected source of GWs are Supermassive Black Hole Binaries (SMBHBs) that will most likely form an ensemble creating a stochastic GW background with possibly a few nearby/massive sources that will be individually resolvable. A direct detection of GWs will open a new window into the fields of …


Multimessenger Approach To Search For Cosmic Ray Anisotropies, Larry David Buroker May 2013

Multimessenger Approach To Search For Cosmic Ray Anisotropies, Larry David Buroker

Theses and Dissertations

The origin of the highest energy cosmic rays is still unknown. The discovery of their sources will reveal the workings of the most energetic astrophysical accelerators in the universe. Recent international efforts have brought us closer to unveiling this mystery. Possible ultra-high energy cosmic ray sources have been narrowed down with the confirmation of an "ankle" and the GZKlike spectral feature at the high-end of the energy spectrum. A clear resolution of the ultra-high energy mystery calls for the search of anisotropies in the distribution of arrival directions of cosmic rays. In this thesis, we adopt the so-called "multi-messenger" approach …


The Neutron-Star Equation Of State And Gravitational Waves From Compact Binaries, Benjamin David Lackey Aug 2012

The Neutron-Star Equation Of State And Gravitational Waves From Compact Binaries, Benjamin David Lackey

Theses and Dissertations

The equation of state (EOS) of matter above nuclear density is currently uncertain by almost an order of magnitude. Fortunately, neutron stars (NS) provide an ideal laboratory for studying high density matter. In order to systematize the study of the EOS from NS observations, we introduce a parametrized high-density EOS that accurately fits theoretical candidate EOSs. We then determine the ability of several recent and near-future electromagnetic observations to constrain the parameter space of our EOS. Recent observations include measurements of masses, gravitational redshift, and spin period, and we find that high mass observations are the most useful at constraining …