Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 37 of 37

Full-Text Articles in Physics

Adaptive Harmonic Balance Method For Unsteady, Nonlinear, One-Dimensional Periodic Flows, Raymond C. Maple Sep 2002

Adaptive Harmonic Balance Method For Unsteady, Nonlinear, One-Dimensional Periodic Flows, Raymond C. Maple

Theses and Dissertations

A new adaptive split-domain harmonic balance computational fluid dynamics (CFD) method is developed to solve highly nonlinear time-periodic flows such as those found in turbomachinery. The basic harmonic balance CFD method transforms an unsteady time-periodic problem into a steady-state problem by assuming a solution in the form of a Fourier series in time. The new method employs a unique multi-domain split-operator solution technique to remove a large-series stability restriction present in previous harmonic balance CFD approaches. In addition, the new method adapts the frequency content to the flow, starting with a small number of Fourier frequencies and augmenting the frequency …


Computational Aerodynamic Analysis Of The Flow Field About A Hypervelocity Test Sled, Andrew J. Lofthouse Mar 2002

Computational Aerodynamic Analysis Of The Flow Field About A Hypervelocity Test Sled, Andrew J. Lofthouse

Theses and Dissertations

The flow field about the nose section of a hypervelocity test sled is computed using computational fluid dynamics. The numerical model of the test sled corresponds to the Nike O/U narrow gage sled used in the upgrade program at the High Speed Test Track facility, Holloman Air Force Base, New Mexico. The high temperatures and pressures resulting from the aerodynamic heating and loading affect the sled structure and the performance of the vehicle. The sled transitions from an air environment to a helium environment at a speed of approximately 3,300 feet per second (Mach 3 in air, Mach 1.02 in …


Reduced Order Modeling For High Speed Flows With Moving Shocks, David J. Lucia Dec 2001

Reduced Order Modeling For High Speed Flows With Moving Shocks, David J. Lucia

Theses and Dissertations

The use of Proper Orthogonal Decomposition (POD) for reduced order modeling (ROM) of fluid problems is extended to high-speed compressible fluid flows. The challenge in using POD for high-speed flows is presented by the presence of moving discontinuities in the flow field. To overcome these difficulties, a domain decomposition approach is developed that isolates the region containing the moving shock wave for special treatment. The domain decomposition implementation produces internal boundaries between the various domain sections. The domains are linked using optimization-based solvers which employ constraints to ensure smoothness in overlapping portions of the internal boundary. This approach is applied …


Modeling Axisymmetric Optical Precision Piezoelectric Membranes, James W. Rogers Jr. Oct 2001

Modeling Axisymmetric Optical Precision Piezoelectric Membranes, James W. Rogers Jr.

Theses and Dissertations

The US Department of Defense (DOD), as well as the National Aeronautics and Astronautics Administration (NASA) and the Jet Propulsion Laboratory (JPL) are interested in developing and deploying precise, compliant, light-weight, space-based structures. More specifically, the Air Force’s core competencies ‘Aerospace Superiority’ and ‘Information Superiority’ demand ever-increasing depth and breadth of capability. Whether used for energy transmission or optical reconnaissance, current launch restraints limit rigid space-based optical reflector size. To support this requirement, the Air Force Research Laboratory (AFRL) is developing a large space-based optical membrane telescope. Inflatable reflectors can conceptually break this barrier, but controlling such a compliant structure …


Optical Metrology Of Adaptive Membrane Mirrors, John W. Wagner Mar 2000

Optical Metrology Of Adaptive Membrane Mirrors, John W. Wagner

Theses and Dissertations

Current space-based imaging platforms are significantly constrained in both size and weight by the launch vehicle. Increased payload size and weight results in increased cost and a decrease in launch responsiveness. The USAF Scientific Advisory Board (SAB) identified "Large lightweight structures for optics and antennas" as a revolutionary primary technology to be developed for the Air Force of the 21st Century. A membrane primary mirror in a space-based imaging system has the ability to overcome current payload constraints and meet evolutionary needs of the future. The challenge of membrane optics in space is the process of implementing adaptive optics technology …


Shock Waves In Nonequilibrium Gases And Plasmas, William M. Hilbun Oct 1997

Shock Waves In Nonequilibrium Gases And Plasmas, William M. Hilbun

Theses and Dissertations

An analysis and assessment of three mechanisms describing plasma/shock wave interactions was conducted under conditions typically encountered in a weakly ionized glow discharge. The mechanisms of ion-acoustic wave damping, post-shock energy addition and thermal inhomogeneities were examined by numerically solving the Euler equations with appropriate source terms adapted for each mechanism. Ion-acoustic wave damping was examined by modeling the partially ionized plasma as two fluids in one spatial dimension using the Riemann problem as a basis. Post-shock energy addition in the form of nonequilibrium vibrational energy relaxation was also examined in one spatial dimension using the Riemann problem as a …


Flow Visualization Of A Turbulent Shear Flow Using An Optical Wavefront Sensor, Daniel W. Jewell Dec 1994

Flow Visualization Of A Turbulent Shear Flow Using An Optical Wavefront Sensor, Daniel W. Jewell

Theses and Dissertations

The research reported here investigated the use of a shearing interferometer (SI) wavefront sensor to determine the effects of shear-layer turbulence on an optical wavefront. A collimated helium-neon laser beam was propagated through a plane shear-layer produced by mixing helium and nitrogen at different velocities. Since the gases have different indices of refraction, the optical wavefront was distorted by different amounts by each gas. The SI measured the wavefront slope across the sampled area of the wavefront. The shear-layer was viewed from two orthogonal directions. This document contains shadow graphs, interference patterns imaged by each of the SI's six cameras, …