Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Other Oceanography and Atmospheric Sciences and Meteorology

Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature In A Whole Ecosystem Warming Experiment, Rachel M. Wilson, Natalie A. Griffiths, Ate Visser, Karis J. Mcfarlane, Stephen D. Sebestyen, Keith C. Oleheiser, Samantha Bosman, Anya M. Hopple, Malak M. Tfaily, Randall K. Kolka, Paul J. Hanson, Joel E. Kostka, Scott D. Bridgham, Jason K. Keller, Jeffrey P. Chanton Oct 2021

Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature In A Whole Ecosystem Warming Experiment, Rachel M. Wilson, Natalie A. Griffiths, Ate Visser, Karis J. Mcfarlane, Stephen D. Sebestyen, Keith C. Oleheiser, Samantha Bosman, Anya M. Hopple, Malak M. Tfaily, Randall K. Kolka, Paul J. Hanson, Joel E. Kostka, Scott D. Bridgham, Jason K. Keller, Jeffrey P. Chanton

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem-scale climate manipulation experiment, designed to examine peatland ecosystem response to climate forcings. We examined whether heating up to +9 °C to 3 m-deep in a peat bog over a 7-year period led to higher C turnover and CO2 and CH4 emissions, by measuring 14C of solid peat, dissolved organic carbon (DOC), CH4, and dissolved CO2 (DIC). DOC, a major substrate for heterotrophic respiration, increased significantly with warming. There was no 7-year trend …


Characterizing El Niño-Southern Oscillation Effects On The Blue Nile Yield And The Nile River Basin Precipitation Using Empirical Mode Decomposition, Justin A. Le, Hesham El-Askary, Mohamed Allali, Eman Sayed, Hani Sweliem, Thomas C. Piechota, Daniele C. Struppa Nov 2020

Characterizing El Niño-Southern Oscillation Effects On The Blue Nile Yield And The Nile River Basin Precipitation Using Empirical Mode Decomposition, Justin A. Le, Hesham El-Askary, Mohamed Allali, Eman Sayed, Hani Sweliem, Thomas C. Piechota, Daniele C. Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

Using new mathematical and data-driven techniques, we propose new indices to measure and predict the strength of different El Niño events and how they affect regions like the Nile River Basin (NRB). Empirical Mode Decomposition (EMD), when applied to Southern Oscillation Index (SOI), yields three Intrinsic Mode Functions (IMF) tracking recognizable and physically significant non-stationary processes. The aim is to characterize underlying signals driving ENSO as reflected in SOI, and show that those signals also meaningfully affect other physical processes with scientific and predictive utility. In the end, signals are identified which have a strong statistical relationship with various physical …


Principles Of Organizing Earthquake Forecasting Based On Multiparameter Sensor-Web Monitoring Data, Sergey Pulinets, Dimitar Ouzounov, Dmitry Davidenko, Pavel Budnikov Oct 2020

Principles Of Organizing Earthquake Forecasting Based On Multiparameter Sensor-Web Monitoring Data, Sergey Pulinets, Dimitar Ouzounov, Dmitry Davidenko, Pavel Budnikov

Mathematics, Physics, and Computer Science Faculty Articles and Research

The paper describes an approach that allows, basing on the data of multiparameter monitoring of atmospheric and ionospheric parameters and using ground-based and satellite measurements, to select from the data stream a time interval indicating the beginning of the final stage of earthquake preparation, and finally using intelligent data processing to carry out a short-term forecast for a time interval of 2 weeks to 1 day before the main shock. Based on the physical model of the lithosphere-atmospheric-ionospheric coupling, the precursors are selected, the ensemble of which is observed only during the precursory periods, and their identification is based on …


Long-Term Ndvi And Recent Vegetation Cover Profiles Of Major Offshore Island Nesting Sites Of Sea Turtles In Saudi Waters Of The Northern Arabian Gulf, Rommel H. Maneja, Jeffrey D. Miller, Wenzhao Li, Hesham El-Askary, Ace Vincent B. Flandez, Joshua J. Dagoy, Joselito Francis A. Alcaria, Abdullajid U. Basali, Khaled A. Al-Abdulkader, Ronald A. Loughland, Mohamed A. Qurban Jun 2020

Long-Term Ndvi And Recent Vegetation Cover Profiles Of Major Offshore Island Nesting Sites Of Sea Turtles In Saudi Waters Of The Northern Arabian Gulf, Rommel H. Maneja, Jeffrey D. Miller, Wenzhao Li, Hesham El-Askary, Ace Vincent B. Flandez, Joshua J. Dagoy, Joselito Francis A. Alcaria, Abdullajid U. Basali, Khaled A. Al-Abdulkader, Ronald A. Loughland, Mohamed A. Qurban

Mathematics, Physics, and Computer Science Faculty Articles and Research

Vegetation is an important ecological component of offshore islands in the Arabian Gulf (AG), which maintains long-term resilience of these islands. This is achieved by influencing sediment retention and moisture acquisition via condensation during periods of high humidity and by providing a variety of microhabitats for island fauna. The resilience of offshore islands’ ecosystems in the Saudi waters is important because they host the largest number of nesting hawksbill and green turtles in the AG. This study defines the characteristics and the long-term trends in vegetation cover of the offshore islands used by sea turtles as nesting grounds in the …


Changes In Atmospheric, Meteorological, And Ocean Parameters Associated With The 12 January 2020 Taal Volcanic Eruption, Feng Jing, Akshansa Chauhan, Ramesh P. Singh, Prasanjit Dash Mar 2020

Changes In Atmospheric, Meteorological, And Ocean Parameters Associated With The 12 January 2020 Taal Volcanic Eruption, Feng Jing, Akshansa Chauhan, Ramesh P. Singh, Prasanjit Dash

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The Taal volcano erupted on 12 January 2020, the first time since 1977. About 35 mild earthquakes (magnitude greater than 4.0) were observed on 12 January 2020 induced from the eruption. In the present paper, we analyzed optical properties of volcanic aerosols, volcanic gas emission, ocean parameters using multi-satellite sensors, namely, MODIS (Moderate Resolution Imaging Spectroradiometer), AIRS (Atmospheric Infrared Sounder), OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) and ground observations, namely, Argo, and AERONET (AErosol RObotic NETwork) data. Our detailed analysis shows pronounced changes in all the parameters, which mainly occurred in the western and south-western regions because the …


Tropospheric And Ionospheric Anomalies Induced By Volcanic And Saharan Dust Events As Part Of Geosphere Interaction Phenomena, Valerio Tramutoli, Francesco Marchese, Alfredo Falconieri, Carolina Filizzola, Nicola Genzano, Katsumi Hattori, Mariano Lisi, Jann-Yenq Liu, Dimitar Ouzounov, Michel Parrot, Nicola Pergola, Sergey Pulinets Apr 2019

Tropospheric And Ionospheric Anomalies Induced By Volcanic And Saharan Dust Events As Part Of Geosphere Interaction Phenomena, Valerio Tramutoli, Francesco Marchese, Alfredo Falconieri, Carolina Filizzola, Nicola Genzano, Katsumi Hattori, Mariano Lisi, Jann-Yenq Liu, Dimitar Ouzounov, Michel Parrot, Nicola Pergola, Sergey Pulinets

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this work, we assessed the possible relation of ionospheric perturbations observed by Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER), Global Positioning System total electron content (GPS TEC), National Oceanic and Atmospheric Administration (NOAA)-derived outgoing longwave-Earth radiation (OLR), and atmospheric chemical potential (ACP) measurements, with volcanic and Saharan dust events identified by ground and satellite-based medium infrared/thermal infrared (MIR/TIR) observations. The results indicated that the Mt. Etna (Italy) volcanic activity of 2006 was probably responsible for the ionospheric perturbations revealed by DEMETER on 4 November and 6 December and by GPS TEC observations on 4 November and 12 …


Coupling Between Land–Ocean–Atmosphere And Pronounced Changes In Atmospheric/Meteorological Parameters Associated With The Hudhud Cyclone Of October 2014, Akshansa Chauhan, Rajesh Kumar, Ramesh P. Singh Dec 2018

Coupling Between Land–Ocean–Atmosphere And Pronounced Changes In Atmospheric/Meteorological Parameters Associated With The Hudhud Cyclone Of October 2014, Akshansa Chauhan, Rajesh Kumar, Ramesh P. Singh

Mathematics, Physics, and Computer Science Faculty Articles and Research

India is vulnerable to all kinds of natural hazards associated with land, ocean, biosphere, atmosphere, and snow/glaciers. These natural hazards impact large areas and the population living in the affected regions. India is surrounded by ocean on three sides and is vulnerable to cyclonic activities. Every year cyclones hit the east and west coasts of India, affecting the population living along the coasts and infrastructure and inland areas. The extent of the affected inland areas depends on the intensity of the cyclone. On 12 October 2014, a strong cyclone “Hudhud” hit the east coast of India that caused a high …


Predicting Spatial Patterns In Precipitation Isotope (Δ2h And Δ18o) Seasonality Using Sinusoidal Isoscapes, Scott T. Allen, James W. Kirchner, Gregory R. Goldsmith May 2018

Predicting Spatial Patterns In Precipitation Isotope (Δ2h And Δ18o) Seasonality Using Sinusoidal Isoscapes, Scott T. Allen, James W. Kirchner, Gregory R. Goldsmith

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding how precipitation isotopes vary spatially and temporally is important for tracer applications. We tested how well month‐to‐month variations in precipitation δ18O and δ2H were captured by sinusoidal cycles, and how well spatial variations in these seasonal cycles could be predicted, across Switzerland. Sine functions representing seasonal cycles in precipitation isotopes explained between 47% and 94% of the variance in monthly δ18O and δ2H values at each monitoring site. A significant sinusoidal cycle was also observed in line‐conditioned excess. We interpolated the amplitudes, phases, and offsets of these sine functions across the landscape, using multiple linear …


An Assessment Of Atmospheric And Meteorological Factors Regulating Red Sea Phytoplankton Growth, Wenzhao Li, Hesham El-Askary, Mohamed A. Qurban, Emmanouil Proestakis, Michael J. Garay, Olga V. Kalishnikova, Vassilis Amiridis, Antonis Gkikas, Eleni Marinou, Thomas Piechota, K. P. Manikandan Apr 2018

An Assessment Of Atmospheric And Meteorological Factors Regulating Red Sea Phytoplankton Growth, Wenzhao Li, Hesham El-Askary, Mohamed A. Qurban, Emmanouil Proestakis, Michael J. Garay, Olga V. Kalishnikova, Vassilis Amiridis, Antonis Gkikas, Eleni Marinou, Thomas Piechota, K. P. Manikandan

Mathematics, Physics, and Computer Science Faculty Articles and Research

This study considers the various factors that regulate nutrients supply in the Red Sea. Multi-sensor observation and reanalysis datasets are used to examine the relationships among dust deposition, sea surface temperature (SST), and wind speed, as they may contribute to anomalous phytoplankton blooms, through time-series and correlation analyses. A positive correlation was found at 0–3 months lag between chlorophyll-a (Chl-a) anomalies and dust anomalies over the Red Sea regions. Dust deposition process was further examined with dust aerosols’ vertical distribution using satellite lidar data. Conversely, a negative correlation was found at 0–3 months lag between SST anomalies …


On The Relationship Between Spring Nao And Snowmelt In The Upper Southwestern United States, Boksoon Myoung, Seung Hee Kim, Jinwon Kim, Menas Kafatos Mar 2017

On The Relationship Between Spring Nao And Snowmelt In The Upper Southwestern United States, Boksoon Myoung, Seung Hee Kim, Jinwon Kim, Menas Kafatos

Mathematics, Physics, and Computer Science Faculty Articles and Research

This study examines the relationship between the North Atlantic Oscillation (NAO) and snowmelt in spring in the upper southwestern states of the United States (UP_SW) including California, Nevada, Utah, and Colorado, using SNOTEL datasets for 34 yr (1980–2014). Statistically significant negative correlations are found between NAO averages in the snowmelt period and timings of snowmelt (i.e., positive NAO phases in spring enhance snowmelt, and vice versa). It is also found that correlations between El Niño–Southern Oscillation and snowmelt are negligible in the region. The NAO–snowmelt relationship is most pronounced below the 2800-m level; above this level, the relationship becomes weaker. …