Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

2023

Seagrass

Articles 1 - 3 of 3

Full-Text Articles in Oceanography

The Vulnerability And Resilience Of Seagrass Ecosystems To Marine Heatwaves In New Zealand: A Remote Sensing Analysis Of Seascape Metrics Using Planetscope Imagery, Ken Joseph E. Clemente, Mads S. Thomsen, Richard C. Zimmerman Jan 2023

The Vulnerability And Resilience Of Seagrass Ecosystems To Marine Heatwaves In New Zealand: A Remote Sensing Analysis Of Seascape Metrics Using Planetscope Imagery, Ken Joseph E. Clemente, Mads S. Thomsen, Richard C. Zimmerman

OES Faculty Publications

Seagrasses are foundation species that provide ecosystem functions and services, including increased biodiversity, sediment retention, carbon sequestration, and fish nursery habitat. However, anthropogenic stressors that reduce water quality, impose large-scale climate changes, and amplify weather patterns, such as marine heatwaves, are altering seagrass meadow configurations. Quantifying large-scale trends in seagrass distributions will help evaluate the impacts of climate drivers on their functions and services. Here, we quantified spatiotemporal dynamics in abundances and configurations of intertidal and shallow subtidal seagrass (Zostera muelleri) meadows in 20 New Zealand (NZ) estuaries that span a 5-year period (mid/late 2016–early 2022) just before, …


Providing A Framework For Seagrass Mapping In United States Coastal Ecosystems Using High Spatial Resolution Satellite Imagery, Megan M. Coffer, David D. Graybill, Peter J. Whitman, Blake A. Schaeffer, Wilson B. Salls, Richard C. Zimmerman, Victoria Hill, Marie Cindy Lebrasse, Jiang Li, Darryl J. Keith, James Kaldy, Phil Colarusso, Gary Raulerson, David Ward, W. Judson Kenworthy Jan 2023

Providing A Framework For Seagrass Mapping In United States Coastal Ecosystems Using High Spatial Resolution Satellite Imagery, Megan M. Coffer, David D. Graybill, Peter J. Whitman, Blake A. Schaeffer, Wilson B. Salls, Richard C. Zimmerman, Victoria Hill, Marie Cindy Lebrasse, Jiang Li, Darryl J. Keith, James Kaldy, Phil Colarusso, Gary Raulerson, David Ward, W. Judson Kenworthy

OES Faculty Publications

Seagrasses have been widely recognized for their ecosystem services, but traditional seagrass monitoring approaches emphasizing ground and aerial observations are costly, time-consuming, and lack standardization across datasets. This study leveraged satellite imagery from Maxar's WorldView-2 and WorldView-3 high spatial resolution, commercial satellite platforms to provide a consistent classification approach for monitoring seagrass at eleven study areas across the continental United States, representing geographically, ecologically, and climatically diverse regions. A single satellite image was selected at each of the eleven study areas to correspond temporally to reference data representing seagrass coverage and was classified into four general classes: land, seagrass, no …


Impact Of Atmospheric Correction On Classification And Quantification Of Seagrass Density From Worldview-2 Imagery, Victoria J. Hill, Richard C. Zimmerman, Paul Bissett, David Kohler, Blake Schaeffer, Megan Coffer, Jiang Li, Kazi Aminul Islam Jan 2023

Impact Of Atmospheric Correction On Classification And Quantification Of Seagrass Density From Worldview-2 Imagery, Victoria J. Hill, Richard C. Zimmerman, Paul Bissett, David Kohler, Blake Schaeffer, Megan Coffer, Jiang Li, Kazi Aminul Islam

OES Faculty Publications

Mapping the seagrass distribution and density in the underwater landscape can improve global Blue Carbon estimates. However, atmospheric absorption and scattering introduce errors in space-based sensors’ retrieval of sea surface reflectance, affecting seagrass presence, density, and above-ground carbon (AGCseagrass) estimates. This study assessed atmospheric correction’s impact on mapping seagrass using WorldView-2 satellite imagery from Saint Joseph Bay, Saint George Sound, and Keaton Beach in Florida, USA. Coincident in situ measurements of water-leaving radiance (Lw), optical properties, and seagrass leaf area index (LAI) were collected. Seagrass classification and the retrieval of LAI were compared after empirical line …