Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Climate

A Cross Comparison Of Spatiotemporally Enhanced Springtime Phenological Measurements From Satellites And Ground In A Northern U.S. Mixed Forest, Liang Liang, Mark D. Schwartz, Zhuosen Wang, Feng Gao, Crystal B. Schaaf, Bin Tan, Jeffrey T. Morisette, Xiaoyang Zhang Dec 2014

A Cross Comparison Of Spatiotemporally Enhanced Springtime Phenological Measurements From Satellites And Ground In A Northern U.S. Mixed Forest, Liang Liang, Mark D. Schwartz, Zhuosen Wang, Feng Gao, Crystal B. Schaaf, Bin Tan, Jeffrey T. Morisette, Xiaoyang Zhang

GSCE Faculty Publications

Cross comparison of satellite-derived land surface phenology (LSP) and ground measurements is useful to ensure the relevance of detected seasonal vegetation change to the underlying biophysical processes. While standard 16-day and 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index (VI)-based springtime LSP has been evaluated in previous studies, it remains unclear whether LSP with enhanced temporal and spatial resolutions can capture additional details of ground phenology. In this paper, we compared LSP derived from 500-m daily MODIS and 30-m MODIS-Landsat fused VI data with landscape phenology (LP) in a northern U.S. mixed forest. LP was previously developed from intensively observed …


Earlier Vegetation Green-Up Has Reduced Spring Dust Storms, Bihang Fan, Li Guo, Ning Li, Jin Chen, Henry Lin, Xiaoyang Zhang, Miaogen Shen, Yuhan Rao, Cong Wang, Lei Ma Oct 2014

Earlier Vegetation Green-Up Has Reduced Spring Dust Storms, Bihang Fan, Li Guo, Ning Li, Jin Chen, Henry Lin, Xiaoyang Zhang, Miaogen Shen, Yuhan Rao, Cong Wang, Lei Ma

GSCE Faculty Publications

The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating above ground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date …


Data-Driven Diagnostics Of Terrestrial Carbon Dynamics Over North America, Jingfeng Xiao, Scott V. Ollinger, Steve Frolking, George C. Hurtt, David Y. Hollinger, Kenneth J. Davis, Yude Pan, Xiaoyang Zhang, Feng Deng, Jiquan Chen, Dennis D. Baldocchi, Bevery E. Law, M. Altaf Arain, Ankur R. Desai, Andrew D. Richardson, Ge Sun, Brian Amiro, Hank Margolis, Lianhong Gu, Russell L. Scott, Peter D. Blanken, Andrew E. Suyker Oct 2014

Data-Driven Diagnostics Of Terrestrial Carbon Dynamics Over North America, Jingfeng Xiao, Scott V. Ollinger, Steve Frolking, George C. Hurtt, David Y. Hollinger, Kenneth J. Davis, Yude Pan, Xiaoyang Zhang, Feng Deng, Jiquan Chen, Dennis D. Baldocchi, Bevery E. Law, M. Altaf Arain, Ankur R. Desai, Andrew D. Richardson, Ge Sun, Brian Amiro, Hank Margolis, Lianhong Gu, Russell L. Scott, Peter D. Blanken, Andrew E. Suyker

GSCE Faculty Publications

The exchange of carbon dioxide is a key measure of ecosystem metabolism and a critical intersection between the terrestrial biosphere and the Earth's climate. Despite the general agreement that the terrestrial ecosystems in North America provide a sizeable carbon sink, the size and distribution of the sink remain uncertain. We use a data-driven approach to upscale eddy covariance flux observations from towers to the continental scale by integrating flux observations, meteorology, stand age, aboveground biomass, and a proxy for canopy nitrogen concentrations from AmeriFlux and Fluxnet-Canada Research Network as well as a variety of satellite data streams from the MODIS …


Interannual Variation In Biomass Burning And Fire Seasonality Derived From Geostationary Satellite Data Across The Contiguous United States From 1995 To 2011, Xiaoyang Zhang, Shobha Kondragunta, David Roy Jun 2014

Interannual Variation In Biomass Burning And Fire Seasonality Derived From Geostationary Satellite Data Across The Contiguous United States From 1995 To 2011, Xiaoyang Zhang, Shobha Kondragunta, David Roy

GSCE Faculty Publications

Wildfires exhibit a strong seasonality that is driven by climatic factors and human activities. Although the fire seasonality is commonly determined using burned area and fire frequency, it could also be quantified using biomass consumption estimates that directly represent biomass loss (a combination of the area burned and the fuel loading). Therefore, in this study a data set of long-term biomass consumed was derived from geostationary satellite data to explore the interannual variation in the fire seasonality and the possible impacts of climate change and land management practices across the Contiguous United States (CONUS). Specifically, daily biomass consumed data were …


Interannual Variations And Trends In Global Land Surface Phenology Derived From Enhanced Vegetation Index During 1982–2010, Xiaoyang Zhang, Bin Tan, Yunyue Yu May 2014

Interannual Variations And Trends In Global Land Surface Phenology Derived From Enhanced Vegetation Index During 1982–2010, Xiaoyang Zhang, Bin Tan, Yunyue Yu

GSCE Faculty Publications

Land surface phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstrated to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This study detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel …