Open Access. Powered by Scholars. Published by Universities.®

Eugene C. Cordero

Climate Models

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Atmospheric Sciences

Evaluating Modeled Intra- To Multidecadal Climate Variability Using Running Mann–Whitney Z Statistics, Steven A. Mauget, Eugene C. Cordero, Patrick T. Brown Mar 2012

Evaluating Modeled Intra- To Multidecadal Climate Variability Using Running Mann–Whitney Z Statistics, Steven A. Mauget, Eugene C. Cordero, Patrick T. Brown

Eugene C. Cordero

An analysis method previously used to detect observed intra- to multidecadal (IMD) climate regimes was adapted to compare observed and modeled IMD climate variations. Pending the availability of the more appropriate phase 5 Coupled Model Intercomparison Project (CMIP-5) simulations, the method is demonstrated using CMIP-3 model simulations. Although the CMIP-3 experimental design will almost certainly prevent these model runs from reproducing features of historical IMD climate variability, these simulations allow for the demonstration of the method and illustrate how the models and observations disagree. This method samples a time series’s data rankings over moving time windows, converts those ranking sets …


Chemistry–Climate Model Simulations Of Twenty-First Century Stratospheric Climate And Circulation Changes, Neal Butchart, I. Cionni, V. Eyring, T. G. Shepherd, D. W. Waugh, H. Akiyoshi, J. Austin, C. Brühl, M. P. Chipperfield, Eugene C. Cordero, M. Dameris, R. Deckert, S. Dhomse, S. M. Frith, R. R. Garcia, A. Gettelman, M. A. Giorgetta, D. E. Kinnison, F. Li, E. Mancini, S. Pawson, G. Pitari, D. A. Plummer, E. Rozanov, F. Sassi, J. F. Scinocca, K. Shibata, B. Steil, W. Tian Oct 2010

Chemistry–Climate Model Simulations Of Twenty-First Century Stratospheric Climate And Circulation Changes, Neal Butchart, I. Cionni, V. Eyring, T. G. Shepherd, D. W. Waugh, H. Akiyoshi, J. Austin, C. Brühl, M. P. Chipperfield, Eugene C. Cordero, M. Dameris, R. Deckert, S. Dhomse, S. M. Frith, R. R. Garcia, A. Gettelman, M. A. Giorgetta, D. E. Kinnison, F. Li, E. Mancini, S. Pawson, G. Pitari, D. A. Plummer, E. Rozanov, F. Sassi, J. F. Scinocca, K. Shibata, B. Steil, W. Tian

Eugene C. Cordero

The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 ± 0.07 K decade−1 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade …