Open Access. Powered by Scholars. Published by Universities.®

Chemistry & Biochemistry Faculty Publications

Chemistry

Trends

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Atmospheric Sciences

Stratospheric Fluorine As A Tracer Of Circulation Changes: Comparison Between Infrared Remote-Sensing Observations And Simulations With Five Modern Reanalyses, M. Prignon, S. Chabrillat, M. Friedrich, D. Smale, S. E. Strahan, Peter F. Bernath, M. P. Chipperfield, S. S. Dhomse, W. Feng, D. Minganti, C. Servais, E. Mahieu Jan 2021

Stratospheric Fluorine As A Tracer Of Circulation Changes: Comparison Between Infrared Remote-Sensing Observations And Simulations With Five Modern Reanalyses, M. Prignon, S. Chabrillat, M. Friedrich, D. Smale, S. E. Strahan, Peter F. Bernath, M. P. Chipperfield, S. S. Dhomse, W. Feng, D. Minganti, C. Servais, E. Mahieu

Chemistry & Biochemistry Faculty Publications

Using multidecadal time series of ground-based and satellite Fourier transform infrared measurements of inorganic fluorine (i.e., total fluorine resident in stratospheric fluorine reservoirs), we investigate stratospheric circulation changes over the past 20 years. The representation of these changes in five modern reanalyses is further analyzed through chemical-transport model (CTM) simulations. From the observations but also from all reanalyses, we show that the inorganic fluorine is accumulating less rapidly in the Southern Hemisphere than in the Northern Hemisphere during the 21st century. Comparisons with a study evaluating the age-of-air of these reanalyses using the same CTM allow us to link this …


Recent Trends In Stratospheric Chlorine From Very Short‐Lived Substances, Ryan Hossaini, Elliot Atlas, Sandip S. Dhomse, Martyn P. Chipperfield, Peter F. Bernath, Anton M. Fernando, Jens Mühle, Amber A. Leeson, Stephen A. Montzka, Wuhu Feng Jan 2019

Recent Trends In Stratospheric Chlorine From Very Short‐Lived Substances, Ryan Hossaini, Elliot Atlas, Sandip S. Dhomse, Martyn P. Chipperfield, Peter F. Bernath, Anton M. Fernando, Jens Mühle, Amber A. Leeson, Stephen A. Montzka, Wuhu Feng

Chemistry & Biochemistry Faculty Publications

Very short‐lived substances (VSLS), including dichloromethane (CH2Cl2), chloroform (CHCl3), perchloroethylene (C2Cl4), and 1,2‐dichloroethane (C2H4Cl2), are a stratospheric chlorine source and therefore contribute to ozone depletion. We quantify stratospheric chlorine trends from these VSLS (VSLCltot) using a chemical transport model and atmospheric measurements, including novel high‐altitude aircraft data from the NASA VIRGAS (2015) and POSIDON (2016) missions. We estimate VSLCltot increased from 69 (±14) parts per trillion (ppt) Cl in 2000 to 111 (±22) ppt Cl in 2017, with >80% delivered to …


Technical Note: Swift - A Fast Semi-Empirical Model For Polar Stratospheric Ozone Loss, M. Rex, S. Kremser, P. Huck, G. Bodeker, I. Wohltmann, M. L. Santee, P. F. Bernath Jan 2014

Technical Note: Swift - A Fast Semi-Empirical Model For Polar Stratospheric Ozone Loss, M. Rex, S. Kremser, P. Huck, G. Bodeker, I. Wohltmann, M. L. Santee, P. F. Bernath

Chemistry & Biochemistry Faculty Publications

An extremely fast model to estimate the degree of stratospheric ozone depletion during polar winters is described. It is based on a set of coupled differential equations that simulate the seasonal evolution of vortex-averaged hydrogen chloride (HCl), nitric acid (HNO3), chlorine nitrate (ClONO2), active forms of chlorine (ClOx = Cl+ClO+2ClOOCl) and ozone (O3) on isentropic levels within the polar vortices. Terms in these equations account for the chemical and physical processes driving the time rate of change of these species. Eight empirical fit coefficients associated with these terms are derived by iteratively fitting the equations …