Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Atmospheric Sciences

Adjusted Tornado Probabilities, Holly M. Widen, James B. Elsner, Cameron Amrine, Rizalino B. Cruz, Erik Fraza, Laura Michaels, Loury Migliorelli, Brendan Mulholland, Michael Patterson, Sarah Strazzo, Guang Xing Dec 2013

Adjusted Tornado Probabilities, Holly M. Widen, James B. Elsner, Cameron Amrine, Rizalino B. Cruz, Erik Fraza, Laura Michaels, Loury Migliorelli, Brendan Mulholland, Michael Patterson, Sarah Strazzo, Guang Xing

Publications

Tornado occurrence rates computed from the available reports are biased low relative to the unknown true rates. To correct for this low bias, the authors demonstrate a method to estimate the annual probability of being struck by a tornado that uses the average report density estimated as a function of distance from nearest city/town center. The method is demonstrated on Kansas and then applied to 15 other tornado-prone states from Nebraska to Tennessee. States are ranked according to their adjusted tornado rate and comparisons are made with raw rates published elsewhere. The adjusted rates, expressed as return periods, arestates, including …


Auroral Ion Upflows: Sources, High Altitude Dynamics, And Neutral Wind Effects, Meghan R. Burleigh Nov 2013

Auroral Ion Upflows: Sources, High Altitude Dynamics, And Neutral Wind Effects, Meghan R. Burleigh

Doctoral Dissertations and Master's Theses

Large upwellings of thermal plasma are commonly observed in the high-latitude, topside ionosphere. These auroral ion upflows have a range of potential sources including frictional heating, electron precipitation, neutral winds, and higher-altitude density cavities. The unique signatures and detailed evolution of these upflows are examined through the use of Incoherent Scatter Radar data and a sophisticated ionospheric fluid model.

A survey of solar cycle 23 shows that at Sondrestrom upflows occur most often in the cusp region and midnight auroral zone. Simplified force balance analysis and steady state velocity calculations are applied to a few select events to elucidate the …


Wave Heating And Jeans Escape In The Martian Upper Atmosphere, R. L. Walterscheid, Michael P. Hickey Ph.D., G. Schubert Nov 2013

Wave Heating And Jeans Escape In The Martian Upper Atmosphere, R. L. Walterscheid, Michael P. Hickey Ph.D., G. Schubert

Publications

Gusty flow over rough terrain is likely to be a significant source of fast gravity waves and acoustic waves in the atmosphere of Mars, as it is in Earth’s atmosphere. Accordingly, we have used a numerical model to study the dissipation in the thermosphere and exosphere of Mars of upward-propagating fast gravity waves and acoustic waves. Model simulations are performed for a range of wave periods and horizontal wavelengths. Wave amplitudes are constrained by the Mars Global Surveyor and Mars Odyssey aerobraking data, and gravity wave phase velocities are limited by occultation data. Dissipating gravity waves heat some regions of …


Mapping Of The Quasi-Periodic Oscillations At The Flank Magnetopause Into The Ionosphere, Emily R. Dougal Nov 2013

Mapping Of The Quasi-Periodic Oscillations At The Flank Magnetopause Into The Ionosphere, Emily R. Dougal

Doctoral Dissertations and Master's Theses

We have estimated the ionospheric location, area, and travel time of quasi-periodic oscillations originating from the magnetospheric flanks. This was accomplished by utilizing global and local MHD models and Tsyganenko semi-empirical magnetic field model on multiple published and four new cases believed to be caused by the Kelvin-Helmholtz Instability. Finally, we used auroral, magnetometer, and radar instruments to observe the ionospheric signatures. The ionospheric magnetic latitude determined using global MHD and Tsyganenko models ranged from 58.3-80.2 degrees in the northern hemisphere and -59.6 degrees to -83.4 degrees in the southern hemisphere. The ionospheric magnetic local time ranged between 5.0-13.8 hours …


Observed Versus Gcm-Generated Local Tropical Cyclone Frequency: Comparisons Using A Spatial Lattice, Sarah Strazzo, Daniel J. Halperin, James Elsner, Tim Larow, Ming Zhao Nov 2013

Observed Versus Gcm-Generated Local Tropical Cyclone Frequency: Comparisons Using A Spatial Lattice, Sarah Strazzo, Daniel J. Halperin, James Elsner, Tim Larow, Ming Zhao

Publications

Of broad scientific and public interest is the reliability of global climate models (GCMs) to simulate future regional and local tropical cyclone (TC) occurrences. Atmospheric GCMs are now able to generate vortices resembling actual TCs, but questions remain about their fidelity to observed TCs. Here the authors demonstrate a spatial lattice approach for comparing actual with simulated TC occurrences regionally using observed TCs from the International Best Track Archive for Climate Stewardship (IBTrACS) dataset and GCM-generated TCs from the Geophysical Fluid Dynamics Laboratory (GFDL) High Resolution Atmospheric Model (HiRAM) and Florida State University (FSU) Center for Ocean–Atmospheric Prediction Studies (COAPS) …


Ionospheric Signatures Of Acoustic Waves Generated By Transient Tropospheric Forcing, M. D. Zettergren, J. B. Snively Oct 2013

Ionospheric Signatures Of Acoustic Waves Generated By Transient Tropospheric Forcing, M. D. Zettergren, J. B. Snively

Publications

Acoustic waves generated by tropospheric sources may attain significant amplitudes in the thermosphere and overlying ionosphere. Although they are weak precursors to gravity waves in the mesosphere below, acoustic waves may achieve temperature and vertical wind perturbations on the order of approximately tens of Kelvin and m/s throughout the E and F regions. Their perturbations to total electron content are predicted to be detectable by groundbased radar and GPS receivers; they also drive field-aligned currents that may be detectable in situ via magnetometers. Although transient and short lived, ionospheric signatures of acoustic waves may provide new and quantitative insight into …


Numerical And Statistical Evidence For Long-Range Ducted Gravity Wave Propagation Over Halley, Antarctica, J. B. Snively, K. Nielsen, M. P. Hickey, C. J. Heale, M. J. Taylor, T. Moffat-Griffin Sep 2013

Numerical And Statistical Evidence For Long-Range Ducted Gravity Wave Propagation Over Halley, Antarctica, J. B. Snively, K. Nielsen, M. P. Hickey, C. J. Heale, M. J. Taylor, T. Moffat-Griffin

Publications

Abundant short-period, small-scale gravity waves have been identified in the mesosphere and lower thermosphere over Halley, Antarctica, via ground-based airglow image data. Although many are observed as freely propagating at the heights of the airglow layers, new results under modeled conditions reveal that a significant fraction of these waves may be subject to reflections at altitudes above and below.The waves may at times be trapped within broad thermal ducts, spanning from the tropopause or stratopause to the base of the thermosphere (~140 km), which may facilitate long-range propagation (~1000s of km) under favorable wind conditions.


Mesospheric Hydroxyl Airglow Signatures Of Acoustic And Gravity Waves Generated By Transient Tropospheric Forcing, J. B. Snively Sep 2013

Mesospheric Hydroxyl Airglow Signatures Of Acoustic And Gravity Waves Generated By Transient Tropospheric Forcing, J. B. Snively

Publications

"Numerical model results demonstrate that acoustic waves generated by tropospheric sources may produce cylindrical “concentric ring” signatures in the mesospheric hydroxyl airglow layer. They may arrive as precursors to upward propagating gravity waves, generated simultaneously by the same sources, and produce strong temperature perturbations in the thermosphere above. Transient and short-lived, the acoustic wave airglow intensity and temperature signatures are predicted to be detectable by ground-based airglow imaging systems and may provide new insight into the forcing of the upper atmosphere from below."--From publisher's website.


Synoptic-Scale Precursors, Characteristics And Typing Of Nocturnal Mesoscale Convective Complexes In The Great Plains, Shawn M. Milrad, Cailee M. Kelly Sep 2013

Synoptic-Scale Precursors, Characteristics And Typing Of Nocturnal Mesoscale Convective Complexes In The Great Plains, Shawn M. Milrad, Cailee M. Kelly

Publications

Mesoscale convective complexes (MCCs) occur frequently during the warm season in the central U.S. and can produce flooding rains, hail and tornadoes. Previous work has found that the synoptic-scale environment can greatly affect, and be affected by, the development and maintenance of MCCs. Ninetytwo MCC cases from 2006–2011 are manually identified using infrared satellite imagery and partitioned into three types (upstream trough, zonal and ridge) using a unique manual synoptic typing based on 500- hPa height patterns. Upstream trough cases feature an amplified longwave 500-hPa trough upstream of the MCC genesis region (GR), while the 500-hPa flow is relatively flat …


Frequency, Intensity, And Sensitivity To Sea Surface Temperature Of North Atlantic Tropical Cyclones In Best-Track And Simulated Data, Sarah Strazzo, James B. Elsner, Jill C. Trepanier, Kerry A. Emanuel Aug 2013

Frequency, Intensity, And Sensitivity To Sea Surface Temperature Of North Atlantic Tropical Cyclones In Best-Track And Simulated Data, Sarah Strazzo, James B. Elsner, Jill C. Trepanier, Kerry A. Emanuel

Publications

Synthetic hurricane track data generated from a downscaling approach are compared to best-track (observed) data to analyze differences in regional frequency, intensity, and sensitivity of limiting intensity to sea surface temperature (SST). Overall, the spatial distributions of observed and simulated hurricane counts match well, although there are relatively fewer synthetic storms in the eastern quarter of the basin. Additionally, regions of intense synthetic hurricanes tend to coincide with regions of intense observed hurricanes. The sensitivity of limiting hurricane intensity to SST computed from synthetic data is slightly lower than sensitivity computed from observed data (5.561.31 m s21 (standard error, SE) …


The Optical Manifestation Of Dispersive Field‐Aligned Bursts In Auroral Breakup Arcs, H. Dahlgren, J. L. Semeter, R. A. Marshall, M. Zettergren Jul 2013

The Optical Manifestation Of Dispersive Field‐Aligned Bursts In Auroral Breakup Arcs, H. Dahlgren, J. L. Semeter, R. A. Marshall, M. Zettergren

Publications

High‐resolution optical observations of a substorm expansion show dynamic auroral rays with surges of luminosity traveling up the magnetic field lines. Observed in ground‐based imagers, this phenomenon has been termed auroral flames, whereas the rocket signatures of the corresponding energy dispersions are more commonly known as field‐aligned bursts. In this paper, observations of auroral flames obtained at 50 frames/s with a scientific‐grade Complementary Metal Oxide Semiconductor (CMOS) sensor (30° × 30° field of view, 30 m resolution at 120 km) are used to provide insight into the nature of the precipitating electrons similar to high‐resolution particle detectors. Thanks to the …