Open Access. Powered by Scholars. Published by Universities.®

PDF

Selected Works

Michael P. Hickey

Ionospheric irregularities

Articles 1 - 3 of 3

Full-Text Articles in Atmospheric Sciences

Propagation Of Tsunami-Driven Gravity Waves Into The Thermosphere And Ionosphere, Michael P. Hickey, G. Schubert, R. L. Walterscheid Dec 2015

Propagation Of Tsunami-Driven Gravity Waves Into The Thermosphere And Ionosphere, Michael P. Hickey, G. Schubert, R. L. Walterscheid

Michael P. Hickey

Recent observations have revealed large F-region electron density perturbations (~100%) and total electron content (TEC) perturbations (~30%) that appear to be correlated with tsunamis. The characteristic speed and horizontal wavelength of the disturbances are ~200 m/s and ~400 km. We describe numerical simulations using our spectral full-wave model (SFWM) of the upward propagation of a spectrum of gravity waves forced by a tsunami, and the interaction of these waves with the F-region ionosphere. The SFWM describes the propagation of linear, steady-state acoustic-gravity waves in a nonisothermal atmosphere with the inclusion of eddy and molecular diffusion of heat and momentum, ion …


Propagation Of Tsunami-Driven Gravity Waves Into The Thermosphere And Ionosphere, Michael P. Hickey, G. Schubert, R. L. Walterscheid Dec 2015

Propagation Of Tsunami-Driven Gravity Waves Into The Thermosphere And Ionosphere, Michael P. Hickey, G. Schubert, R. L. Walterscheid

Michael P. Hickey

Recent observations have revealed large F-region electron density perturbations (~100%) and total electron content (TEC) perturbations (~30%) that appear to be correlated with tsunamis. The characteristic speed and horizontal wavelength of the disturbances are ~200 m/s and ~400 km. We describe numerical simulations using our spectral full-wave model (SFWM) of the upward propagation of a spectrum of gravity waves forced by a tsunami, and the interaction of these waves with the F-region ionosphere. The SFWM describes the propagation of linear, steady-state acoustic-gravity waves in a nonisothermal atmosphere with the inclusion of eddy and molecular diffusion of heat and momentum, ion …


Atmospheric Airglow Fluctuations Due To A Tsunami‐Driven Gravity Wave Disturbance, Michael P. Hickey Ph.D., G. Schubert, R. L. Walterscheid Sep 2015

Atmospheric Airglow Fluctuations Due To A Tsunami‐Driven Gravity Wave Disturbance, Michael P. Hickey Ph.D., G. Schubert, R. L. Walterscheid

Michael P. Hickey

A spectral full‐wave model is used to study the upward propagation of a gravity wave disturbance and its effect on atmospheric nightglow emissions. Gravity waves are generated by a surface displacement that mimics a tsunami having a maximum amplitude of 0.5 m, a characteristic horizontal wavelength of 400 km, and a horizontal phase speed of 200 m/s. The gravity wave disturbance can reach F region altitudes before significant viscous dissipation occurs. The response of the OH Meinel nightglow in the mesopause region (∼87 km altitude) produces relative brightness fluctuations, which are ∼1% of the mean for overhead viewing. The wave …