Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Atmospheric Sciences

The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu Dec 2020

The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu

Dissertations

The main goal of this dissertation is to generate data and parameterizations to accurately represent soot aerosols in atmospheric models. Soot from incomplete combustion of fossil fuels and biomass burning is a major air pollutant and a significant contributor to climate warming. The environmental impacts of soot are strongly dependent on the particle morphology and mixing state, which evolve continuously during atmospheric transport via a process known as aging. To make predictions of soot impacts on the environment, most atmospheric models adopt simplifications of particle structure and mixing state, which lead to substantial uncertainties. Using an experimentally constrained modeling approach, …


Accumulation Of Polar Vorticity On Giant Planets: Towards A Three-Dimensional Theory, Shawn R. Brueshaber Aug 2020

Accumulation Of Polar Vorticity On Giant Planets: Towards A Three-Dimensional Theory, Shawn R. Brueshaber

Dissertations

My research investigates the polar atmospheric dynamics of the giant planets: Jupiter and Saturn (gas giants), and Uranus and Neptune (ice giants). I conduct my research modifying and applying the Explicit Planetary Isentropic Coordinate global circulation code to model the polar regions of the four giant planets.

The motivation behind my research is to uncover the reason why giant planet polar atmospheric dynamics differ. Jupiter features multiple circumpolar cyclones arranged in geometrical configurations, whereas Saturn features a single pole-centered cyclone. Uranus and Neptune also appear to have single pole-centered cyclones, albeit, larger than those on Saturn. …


Development Of Novel Instrumentation And Methods To Investigate The Composition And Phase Partitioning Of Semivolatile And Intermediately Volatile Organic Compounds In Atmospheric Organic Aerosol, Claire Fortenberry May 2020

Development Of Novel Instrumentation And Methods To Investigate The Composition And Phase Partitioning Of Semivolatile And Intermediately Volatile Organic Compounds In Atmospheric Organic Aerosol, Claire Fortenberry

McKelvey School of Engineering Theses & Dissertations

Atmospheric particulate matter (PM) is ubiquitous in both indoor and outdoor air and is generally detrimental to human health. PM composed of particles with aerodynamic diameters less than 2.5 um (PM2.5) are related to adverse health outcomes including heart disease and respiratory disease. Fundamentally, particle physical properties such as size and hygroscopicity are dictated by chemical composition, which can be highly complex, particularly for organic aerosol (OA). In both outdoor and indoor air, OA is composed substantially of intermediately volatile and semivolatile organic compounds (I/SVOCs), which exist in both gas and particle phases under typical atmospheric conditions. The distribution of …


Detection Of Reconnection Signatures In Solar Flares, Taylor R. Whitney Mar 2020

Detection Of Reconnection Signatures In Solar Flares, Taylor R. Whitney

Theses and Dissertations

Solar flare forecasting is limited by the current understanding of mechanisms that govern magnetic reconnection, the main physical phenomenon associated with these events. As a result, forecasting relies mainly on climatological correlations to historical events rather than the underlying physics principles. Solar physics models place the neutral point of the reconnection event in the solar corona. Correspondingly, studies of photospheric magnetic fields indicate changes during solar flares -- particularly in relation to the field helicity -- on the solar surface as a result of the associated magnetic reconnection. This study utilizes data from the Solar Dynamics Observatory (SDO) Helioseismic and …


Simulation Of Sporadic-E Parameters Using Phase Screen Method, Daniel W. Stambovsky Mar 2020

Simulation Of Sporadic-E Parameters Using Phase Screen Method, Daniel W. Stambovsky

Theses and Dissertations

A phase screen simulation experiment is designed and implemented to model radio occultation through sporadic-E ionospheric disturbances between a GPS transmitter operating at the L1 frequency and a second receiving satellite in low earth orbit (LEO). Simulations were made to test the linear relationship between plasma intensity and scintillation S4 index both posited (Arras and Wickert, 2018) and contended (Gooch et al., 2020) in previous literature. Results brought into question both the linear relationship and the use of S4 as a whole and an alternate metric was sought.


Toward Closing The Urban Surface Energy Balance Using Satellite Remote Sensing, Joshua Hrisko Jan 2020

Toward Closing The Urban Surface Energy Balance Using Satellite Remote Sensing, Joshua Hrisko

Dissertations and Theses

The energy exchanges at the Earth’s surface are responsible for many of the processes that govern weather, climate, human health, and energy use. This exchange, commonly known as the surface energy balance (SEB), determines the near-surface thermodynamic state by partitioning the available energy into surface fluxes. The net all-wave radiation is often the primary energy source, while the heat storage and sensible and latent heat fluxes account for the majority of energy distributed elsewhere. While the SEB of various natural environments(trees, crops, soils) has been well-observed and modeled, the urban surface energy balance remains elusive. This is due to the …


Developing A Uas-Deployable Methane Sensor Using Low-Cost Modular Open-Source Components, Gavin Demali Jan 2020

Developing A Uas-Deployable Methane Sensor Using Low-Cost Modular Open-Source Components, Gavin Demali

Williams Honors College, Honors Research Projects

This project aimed to develop a methane sensor for deployment on an unmanned aerial system (UAS), or drone, platform. This design is centered around low cost, commercially available modular hardware components and open source software libraries. Once successfully developed, this system was deployed at the Bath Nature Preserve in Bath Township, Summit County Ohio in order to detect any potential on site fugitive methane emissions in the vicinity of the oil and gas infrastructure present. The deliverables of this project (i.e. the data collected at BNP) will be given to the land managers there to better inform future management and …


Applications Of Drones In Atmospheric Chemistry, Travis J. Schuyler Jan 2020

Applications Of Drones In Atmospheric Chemistry, Travis J. Schuyler

Theses and Dissertations--Chemistry

The emission of greenhouse gases (GHGs) has changed the composition of the atmosphere during the Anthropocene. A major technical and scientific challenge is quantifying the resulting fugitive trace gas fluxes under variable meteorological conditions. Accurately documenting the sources and magnitude of GHGs emission is an important undertaking for discriminating contributions of different processes to radiative forcing. Therefore, the adverse environmental and health effects of undetected gas leaks motivates new methods of detecting, characterizing, and quantifying plumes of fugitive trace gases. Currently, there is no mobile platform able to quantify trace gases at altitudes(UASs), or drones, can be deployed on-site in …