Open Access. Powered by Scholars. Published by Universities.®

Climate

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

2021

Articles 1 - 1 of 1

Full-Text Articles in Atmospheric Sciences

An Integrative Model For Soil Biogeochemistry And Methane Processes: I. Model Structure And Sensitivity Analysis, Daniel M. Ricciuto, Xiaofeng Xu, Xiaoying Shi, Yihui Wang, Xia Song, Christopher W. Schadt, Natalie A. Griffiths, Jiafu Mao, Jeffrey M. Warren, Peter E. Thornton, Jeff Chanton, Jason K. Keller, Scott D. Bridgham, Jessica Gutknecht, Stephen D. Sebestyen, Adrien Finzi, Randall Kolka, Paul J. Hanson Jul 2021

An Integrative Model For Soil Biogeochemistry And Methane Processes: I. Model Structure And Sensitivity Analysis, Daniel M. Ricciuto, Xiaofeng Xu, Xiaoying Shi, Yihui Wang, Xia Song, Christopher W. Schadt, Natalie A. Griffiths, Jiafu Mao, Jeffrey M. Warren, Peter E. Thornton, Jeff Chanton, Jason K. Keller, Scott D. Bridgham, Jessica Gutknecht, Stephen D. Sebestyen, Adrien Finzi, Randall Kolka, Paul J. Hanson

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Environmental changes are anticipated to generate substantial impacts on carbon cycling in peatlands, affecting terrestrial-climate feedbacks. Understanding how peatland methane (CH4) fluxes respond to these changing environments is critical for predicting the magnitude of feedbacks from peatlands to global climate change. To improve predictions of CH4 fluxes in response to changes such as elevated atmospheric CO2 concentrations and warming, it is essential for Earth system models to include increased realism to simulate CH4 processes in a more mechanistic way. To address this need, we incorporated a new microbial-functional group-based CH4 module into the Energy …