Open Access. Powered by Scholars. Published by Universities.®

Analysis Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Analysis

Approximations In Reconstructing Discontinuous Conductivities In The Calderón Problem, George H. Lytle Jan 2019

Approximations In Reconstructing Discontinuous Conductivities In The Calderón Problem, George H. Lytle

Theses and Dissertations--Mathematics

In 2014, Astala, Päivärinta, Reyes, and Siltanen conducted numerical experiments reconstructing a piecewise continuous conductivity. The algorithm of the shortcut method is based on the reconstruction algorithm due to Nachman, which assumes a priori that the conductivity is Hölder continuous. In this dissertation, we prove that, in the presence of infinite-precision data, this shortcut procedure accurately recovers the scattering transform of an essentially bounded conductivity, provided it is constant in a neighborhood of the boundary. In this setting, Nachman’s integral equations have a meaning and are still uniquely solvable.

To regularize the reconstruction, Astala et al. employ a high frequency …


Boundary Layers In Periodic Homogenization, Jinping Zhuge Jan 2019

Boundary Layers In Periodic Homogenization, Jinping Zhuge

Theses and Dissertations--Mathematics

The boundary layer problems in periodic homogenization arise naturally from the quantitative analysis of convergence rates. Formally they are second-order linear elliptic systems with periodically oscillating coefficient matrix, subject to periodically oscillating Dirichelt or Neumann boundary data. In this dissertation, for either Dirichlet problem or Neumann problem, we establish the homogenization results and obtain the nearly sharp convergence rates, provided the domain is strictly convex. Also, we show that the homogenized boundary data is in W1,p for any p ∈ (1,∞), which implies the Cα-Hölder continuity for any α ∈ (0,1).