Open Access. Powered by Scholars. Published by Universities.®

Analysis Commons

Open Access. Powered by Scholars. Published by Universities.®

Dynamic Systems

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 54

Full-Text Articles in Analysis

Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen Jan 2024

Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen

Theses and Dissertations (Comprehensive)

The complex nature of the human brain, with its intricate organic structure and multiscale spatio-temporal characteristics ranging from synapses to the entire brain, presents a major obstacle in brain modelling. Capturing this complexity poses a significant challenge for researchers. The complex interplay of coupled multiphysics and biochemical activities within this intricate system shapes the brain's capacity, functioning within a structure-function relationship that necessitates a specific mathematical framework. Advanced mathematical modelling approaches that incorporate the coupling of brain networks and the analysis of dynamic processes are essential for advancing therapeutic strategies aimed at treating neurodegenerative diseases (NDDs), which afflict millions of …


Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost Dec 2023

Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost

All Dissertations

In confocal single-molecule FRET experiments, the joint distribution of FRET efficiency and donor lifetime distribution can reveal underlying molecular conformational dynamics via deviation from their theoretical Forster relationship. This shift is referred to as a dynamic shift. In this study, we investigate the influence of the free energy landscape in protein conformational dynamics on the dynamic shift by simulation of the associated continuum reaction coordinate Langevin dynamics, yielding a deeper understanding of the dynamic and structural information in the joint FRET efficiency and donor lifetime distribution. We develop novel Langevin models for the dye linker dynamics, including rotational dynamics, based …


Role Of Inhibition And Spiking Variability In Ortho- And Retronasal Olfactory Processing, Michelle F. Craft Jan 2022

Role Of Inhibition And Spiking Variability In Ortho- And Retronasal Olfactory Processing, Michelle F. Craft

Theses and Dissertations

Odor perception is the impetus for important animal behaviors, most pertinently for feeding, but also for mating and communication. There are two predominate modes of odor processing: odors pass through the front of nose (ortho) while inhaling and sniffing, or through the rear (retro) during exhalation and while eating and drinking. Despite the importance of olfaction for an animal’s well-being and specifically that ortho and retro naturally occur, it is unknown whether the modality (ortho versus retro) is transmitted to cortical brain regions, which could significantly instruct how odors are processed. Prior imaging studies show different …


Dynamic Parameter Estimation From Partial Observations Of The Lorenz System, Eunice Ng Jul 2021

Dynamic Parameter Estimation From Partial Observations Of The Lorenz System, Eunice Ng

Theses and Dissertations

Recent numerical work of Carlson-Hudson-Larios leverages a nudging-based algorithm for data assimilation to asymptotically recover viscosity in the 2D Navier-Stokes equations as partial observations on the velocity are received continuously-in-time. This "on-the-fly" algorithm is studied both analytically and numerically for the Lorenz equations in this thesis.


Smooth Global Approximation For Continuous Data Assimilation, Kenneth R. Brown Jul 2021

Smooth Global Approximation For Continuous Data Assimilation, Kenneth R. Brown

Theses and Dissertations

This thesis develops the finite element method, constructs local approximation operators, and bounds their error. Global approximation operators are then constructed with a partition of unity. Finally, an application of these operators to data assimilation of the two-dimensional Navier-Stokes equations is presented, showing convergence of an algorithm in all Sobolev topologies.


Sum Of Cubes Of The First N Integers, Obiamaka L. Agu Dec 2020

Sum Of Cubes Of The First N Integers, Obiamaka L. Agu

Electronic Theses, Projects, and Dissertations

In Calculus we learned that 􏰅Sum^{n}_{k=1} k = [n(n+1)]/2 , that Sum^{􏰅n}_{k=1} k^2 = [n(n+1)(2n+1)]/6 , and that Sum^{n}_{k=1} k^{3} = (n(n+1)/2)^{2}. These formulas are useful when solving for the area below quadratic or cubic function over an interval [a, b]. This tedious process, solving for areas under a quadratic or a cubic, served as motivation for the introduction of Riemman integrals. For the overzealous math student, these steps were replaced by a simpler method of evaluating antiderivatives at the endpoints a and b. From my recollection, a former instructor informed us to do the value of memorizing these formulas. …


Numerical Computations Of Vortex Formation Length In Flow Past An Elliptical Cylinder, Matthew Karlson, Bogdan Nita, Ashwin Vaidya Sep 2020

Numerical Computations Of Vortex Formation Length In Flow Past An Elliptical Cylinder, Matthew Karlson, Bogdan Nita, Ashwin Vaidya

Department of Mathematics Facuty Scholarship and Creative Works

We examine two dimensional properties of vortex shedding past elliptical cylinders through numerical simulations. Specifically, we investigate the vortex formation length in the Reynolds number regime 10 to 100 for elliptical bodies of aspect ratio in the range 0.4 to 1.4. Our computations reveal that in the steady flow regime, the change in the vortex length follows a linear profile with respect to the Reynolds number, while in the unsteady regime, the time averaged vortex length decreases in an exponential manner with increasing Reynolds number. The transition in profile is used to identify the critical Reynolds number which marks the …


Dynamic Attribute-Level Best Worst Discrete Choice Experiments, Amanda Working, Mohammed Alqawba, Norou Diawara May 2019

Dynamic Attribute-Level Best Worst Discrete Choice Experiments, Amanda Working, Mohammed Alqawba, Norou Diawara

Mathematics & Statistics Faculty Publications

Dynamic modelling of decision maker choice behavior of best and worst in discrete choice experiments (DCEs) has numerous applications. Such models are proposed under utility function of decision maker and are used in many areas including social sciences, health economics, transportation research, and health systems research. After reviewing references on the study of such experiments, we present example in DCE with emphasis on time dependent best-worst choice and discrimination between choice attributes. Numerical examples of the dynamic DCEs are simulated, and the associated expected utilities over time of the choice models are derived using Markov decision processes. The estimates are …


Neutrosophic Triplet Structures - Vol. 1, Florentin Smarandache, Memet Sahin Jan 2019

Neutrosophic Triplet Structures - Vol. 1, Florentin Smarandache, Memet Sahin

Branch Mathematics and Statistics Faculty and Staff Publications

Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent information. Neutrosophic set approaches are suitable to modeling problems with uncertainty, indeterminacy and inconsistent information in which human knowledge is necessary, and human evaluation is needed. Neutrosophic set theory was firstly proposed in 1998 by Florentin Smarandache, who also developed the concept of single valued neutrosophic set, oriented towards real world scientific and engineering applications. Since then, the single valued neutrosophic set theory has been extensively studied in books and monographs, the properties of neutrosophic sets …


Masked Instability: Within-Sector Financial Risk In The Presence Of Wealth Inequality, Youngna Choi Jun 2018

Masked Instability: Within-Sector Financial Risk In The Presence Of Wealth Inequality, Youngna Choi

Department of Applied Mathematics and Statistics Faculty Scholarship and Creative Works

We investigate masked financial instability caused by wealth inequality. When an economic sector is decomposed into two subsectors that possess a severe wealth inequality, the sector in entirety can look financially stable while the two subsectors possess extreme financially instabilities of opposite nature, one from excessive equity, the other from lack thereof. The unstable subsector can result in further financial distress and even trigger a financial crisis. The market instability indicator, an early warning system derived from dynamical systems applied to agent-based models, is used to analyze the subsectoral financial instabilities. Detailed mathematical analysis is provided to explain what financial …


Simplicity And Sustainability: Pointers From Ethics And Science, Mehrdad Massoudi, Ashwin Vaidya Apr 2018

Simplicity And Sustainability: Pointers From Ethics And Science, Mehrdad Massoudi, Ashwin Vaidya

Department of Mathematics Facuty Scholarship and Creative Works

In this paper, we explore the notion of simplicity. We use definitions of simplicity proposed by philosophers, scientists, and economists. In an age when the rapidly growing human population faces an equally rapidly declining energy/material resources, there is an urgent need to consider various notions of simplicity, collective and individual, which we believe to be a sensible path to restore our planet to a reasonable state of health. Following the logic of mathematicians and physicists, we suggest that simplicity can be related to sustainability. Our efforts must therefore not be spent so much in pursuit of growth but in achieving …


Near-Optimal Control Of Switched Systems With Continuous-Time Dynamics Using Approximate Dynamic Programming, Tohid Sardarmehni Apr 2018

Near-Optimal Control Of Switched Systems With Continuous-Time Dynamics Using Approximate Dynamic Programming, Tohid Sardarmehni

Mechanical Engineering Research Theses and Dissertations

Optimal control is a control method which provides inputs that minimize a performance index subject to state or input constraints [58]. The existing solutions for finding the exact optimal control solution such as Pontryagin’s minimum principle and dynamic programming suffer from curse of dimensionality in high order dynamical systems. One remedy for this problem is finding near optimal solution instead of the exact optimal solution to avoid curse of dimensionality [31]. A method for finding the approximate optimal solution is through Approximate Dynamic Programming (ADP) methods which are discussed in the subsequent chapters.

In this dissertation, optimal switching in switched …


On The Lp-Spaces Techniques In The Existence And Uniqueness Of The Fuzzy Fractional Korteweg-De Vries Equation’S Solution, F. Farahrooz, A. Ebadian, S. Najafzadeh Dec 2017

On The Lp-Spaces Techniques In The Existence And Uniqueness Of The Fuzzy Fractional Korteweg-De Vries Equation’S Solution, F. Farahrooz, A. Ebadian, S. Najafzadeh

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, is proposed the existence and uniqueness of the solution of all fuzzy fractional differential equations, which are equivalent to the fuzzy integral equation. The techniques on LP-spaces are used, defining the LpF F ([0; 1]) for 1≤P≤∞, its properties, and using the functional analysis methods. Also the convergence of the method of successive approximations used to approximate the solution of fuzzy integral equation be proved and an iterative procedure to solve such equations is presented.


Analysis Of Time-Dependent Integrodifference Population Models, Taylor J. Mcadam May 2013

Analysis Of Time-Dependent Integrodifference Population Models, Taylor J. Mcadam

HMC Senior Theses

The population dynamics of species with separate growth and dispersal stages can be described by a discrete-time, continuous-space integrodifference equation relating the population density at one time step to an integral expression involving the density at the previous time step. Prior research on this model has assumed that the equation governing the population dynamics remains fixed over time, however real environments are constantly in flux. We show that for time-varying models, there is a value Λ that can be computed to determine a sufficient condition for population survival. We also develop a framework for analyzing persistence of a population for …


A Cauchy Problem For Some Local Fractional Abstract Differential Equation With Fractal Conditions, Yang Xiaojun, Zhong Weiping, Gao Feng Jan 2013

A Cauchy Problem For Some Local Fractional Abstract Differential Equation With Fractal Conditions, Yang Xiaojun, Zhong Weiping, Gao Feng

Xiao-Jun Yang

Fractional calculus is an important method for mathematics and engineering [1-24]. In this paper, we review the existence and uniqueness of solutions to the Cauchy problem for the local fractional differential equation with fractal conditions \[ D^\alpha x\left( t \right)=f\left( {t,x\left( t \right)} \right),t\in \left[ {0,T} \right], x\left( {t_0 } \right)=x_0 , \] where $0<\alpha \le 1$ in a generalized Banach space. We use some new tools from Local Fractional Functional Analysis [25, 26] to obtain the results.


Modeling And Mathematical Analysis Of Plant Models In Ecology, Eric A. Eager Jun 2012

Modeling And Mathematical Analysis Of Plant Models In Ecology, Eric A. Eager

Department of Mathematics: Dissertations, Theses, and Student Research

Population dynamics tries to explain in a simple mechanistic way the variations of the size and structure of biological populations. In this dissertation we use mathematical modeling and analysis to study the various aspects of the dynamics of plant populations and their seed banks.

In Chapter 2 we investigate the impact of structural model uncertainty by considering different nonlinear recruitment functions in an integral projection model for Cirsium canescens. We show that, while having identical equilibrium populations, these two models can elicit drastically different transient dynamics. We then derive a formula for the sensitivity of the equilibrium population to …


A Novel Algorithm To Forecast Enrollment Based On Fuzzy Time Series, Haneen T. Jasim, Abdul G. Jasim Salim, Kais I. Ibraheem Jun 2012

A Novel Algorithm To Forecast Enrollment Based On Fuzzy Time Series, Haneen T. Jasim, Abdul G. Jasim Salim, Kais I. Ibraheem

Applications and Applied Mathematics: An International Journal (AAM)

In this paper we propose a new method to forecast enrollments based on fuzzy time series. The proposed method belongs to the first order and time-variant methods. Historical enrollments of the University of Alabama from year 1948 to 2009 are used in this study to illustrate the forecasting process. By comparing the proposed method with other methods we will show that the proposed method has a higher accuracy rate for forecasting enrollments than the existing methods.


The Discrete Yang-Fourier Transforms In Fractal Space, Yang Xiao-Jun Apr 2012

The Discrete Yang-Fourier Transforms In Fractal Space, Yang Xiao-Jun

Xiao-Jun Yang

The Yang-Fourier transform (YFT) in fractal space is a generation of Fourier transform based on the local fractional calculus. The discrete Yang-Fourier transform (DYFT) is a specific kind of the approximation of discrete transform, used in Yang-Fourier transform in fractal space. This paper points out new standard forms of discrete Yang-Fourier transforms (DYFT) of fractal signals, and both properties and theorems are investigated in detail.


Expression Of Generalized Newton Iteration Method Via Generalized Local Fractional Taylor Series, Yang Xiao-Jun Apr 2012

Expression Of Generalized Newton Iteration Method Via Generalized Local Fractional Taylor Series, Yang Xiao-Jun

Xiao-Jun Yang

Local fractional derivative and integrals are revealed as one of useful tools to deal with everywhere continuous but nowhere differentiable functions in fractal areas ranging from fundamental science to engineering. In this paper, a generalized Newton iteration method derived from the generalized local fractional Taylor series with the local fractional derivatives is reviewed. Operators on real line numbers on a fractal space are induced from Cantor set to fractional set. Existence for a generalized fixed point on generalized metric spaces may take place.


The Zero-Mass Renormalization Group Differential Equations And Limit Cycles In Non-Smooth Initial Value Problems, Yang Xiaojun Mar 2012

The Zero-Mass Renormalization Group Differential Equations And Limit Cycles In Non-Smooth Initial Value Problems, Yang Xiaojun

Xiao-Jun Yang

In the present paper, using the equation transform in fractal space, we point out the zero-mass renormalization group equations. Under limit cycles in the non-smooth initial value, we devote to the analytical technique of the local fractional Fourier series for treating zero-mass renormalization group equations, and investigate local fractional Fourier series solutions.


A Novel Approach To Processing Fractal Dynamical Systems Using The Yang-Fourier Transforms, Yang Xiaojun Mar 2012

A Novel Approach To Processing Fractal Dynamical Systems Using The Yang-Fourier Transforms, Yang Xiaojun

Xiao-Jun Yang

In the present paper, local fractional continuous non-differentiable functions in fractal space are investigated, and the control method for processing dynamic systems in fractal space are proposed using the Yang-Fourier transform based on the local fractional calculus. Two illustrative paradigms for control problems in fractal space are given to elaborate the accuracy and reliable results.


Theory And Applications Of Local Fractional Fourier Analysis, Yang Xiaojun Jan 2012

Theory And Applications Of Local Fractional Fourier Analysis, Yang Xiaojun

Xiao-Jun Yang

Local fractional Fourier analysis is a generalized Fourier analysis in fractal space. The local fractional calculus is one of useful tools to process the local fractional continuously non-differentiable functions (fractal functions). Based on the local fractional derivative and integration, the present work is devoted to the theory and applications of local fractional Fourier analysis in generalized Hilbert space. We investigate the local fractional Fourier series, the Yang-Fourier transform, the generalized Yang-Fourier transform, the discrete Yang-Fourier transform and fast Yang-Fourier transform.


Heat Transfer In Discontinuous Media, Yang Xiaojun Jan 2012

Heat Transfer In Discontinuous Media, Yang Xiaojun

Xiao-Jun Yang

From the fractal geometry point of view, the interpretations of local fractional derivative and local fractional integration are pointed out in this paper. It is devoted to heat transfer in discontinuous media derived from local fractional derivative. We investigate the Fourier law and heat conduction equation (also local fractional instantaneous heat conduct equation) in fractal orthogonal system based on cantor set, and extent them. These fractional differential equations are described in local fractional derivative sense. The results are efficiently developed in discontinuous media.


A Short Note On Local Fractional Calculus Of Function Of One Variable, Yang Xiaojun Jan 2012

A Short Note On Local Fractional Calculus Of Function Of One Variable, Yang Xiaojun

Xiao-Jun Yang

Local fractional calculus (LFC) handles everywhere continuous but nowhere differentiable functions in fractal space. This note investigates the theory of local fractional derivative and integral of function of one variable. We first introduce the theory of local fractional continuity of function and history of local fractional calculus. We then consider the basic theory of local fractional derivative and integral, containing the local fractional Rolle’s theorem, L’Hospital’s rule, mean value theorem, anti-differentiation and related theorems, integration by parts and Taylor’ theorem. Finally, we study the efficient application of local fractional derivative to local fractional extreme value of non-differentiable functions, and give …


A New Successive Approximation To Non-Homogeneous Local Fractional Volterra Equation, Yang Xiaojun Jan 2012

A New Successive Approximation To Non-Homogeneous Local Fractional Volterra Equation, Yang Xiaojun

Xiao-Jun Yang

A new successive approximation approach to the non-homogeneous local fractional Valterra equation derived from local fractional calculus is proposed in this paper. The Valterra equation is described in local fractional integral operator. The theory of local fractional derivative and integration is one of useful tools to handle the fractal and continuously non-differentiable functions, was successfully applied in engineering problem. We investigate an efficient example of handling a non-homogeneous local fractional Valterra equation.


Advanced Local Fractional Calculus And Its Applications, Yang Xiaojun Jan 2012

Advanced Local Fractional Calculus And Its Applications, Yang Xiaojun

Xiao-Jun Yang

This book is the first international book to study theory and applications of local fractional calculus (LFC). It is an invitation both to the interested scientists and the engineers. It presents a thorough introduction to the recent results of local fractional calculus. It is also devoted to the application of advanced local fractional calculus on the mathematics science and engineering problems. The author focuses on multivariable local fractional calculus providing the general framework. It leads to new challenging insights and surprising correlations between fractal and fractional calculus. Keywords: Fractals - Mathematical complexity book - Local fractional calculus- Local fractional partial …


A Short Introduction To Yang-Laplace Transforms In Fractal Space, Yang Xiaojun Jan 2012

A Short Introduction To Yang-Laplace Transforms In Fractal Space, Yang Xiaojun

Xiao-Jun Yang

The Yang-Laplace transforms [W. P. Zhong, F. Gao, In: Proc. of the 2011 3rd International Conference on Computer Technology and Development, 209-213, ASME, 2011] in fractal space is a generalization of Laplace transforms derived from the local fractional calculus. This letter presents a short introduction to Yang-Laplace transforms in fractal space. At first, we present the theory of local fractional derivative and integral of non-differential functions defined on cantor set. Then the properties and theorems for Yang-Laplace transforms are tabled, and both the initial value theorem and the final value theorem are investigated. Finally, some applications to the wave equation …


Local Fractional Integral Equations And Their Applications, Yang Xiaojun Jan 2012

Local Fractional Integral Equations And Their Applications, Yang Xiaojun

Xiao-Jun Yang

This letter outlines the local fractional integral equations carried out by the local fractional calculus (LFC). We first introduce the local fractional calculus and its fractal geometrical explanation. We then investigate the local fractional Volterra/ Fredholm integral equations, local fractional nonlinear integral equations, local fractional singular integral equations and local fractional integro-differential equations. Finally, their applications of some integral equations to handle some differential equations with local fractional derivative and local fractional integral transforms in fractal space are discussed in detail.


Local Fractional Partial Differential Equations With Fractal Boundary Problems, Yang Xiaojun Jan 2012

Local Fractional Partial Differential Equations With Fractal Boundary Problems, Yang Xiaojun

Xiao-Jun Yang

This letter points out the new alternative approaches to processing local fractional partial differential equations with fractal boundary conditions. Applications of the local fractional Fourier series, the Yang-Fourier transforms and the Yang-Laplace transforms to solve of local fractional partial differential equations with fractal boundary conditions are investigated in detail.


Local Fractional Kernel Transform In Fractal Space And Its Applications, Yang Xiaojun Jan 2012

Local Fractional Kernel Transform In Fractal Space And Its Applications, Yang Xiaojun

Xiao-Jun Yang

In the present paper, we point out the local fractional kernel transform based on local fractional calculus (FLC), and its applications to the Yang-Fourier transform, the Yang-Laplace transform, the local fractional Z transform, the local fractional Stieltjes transform, the local fractional volterra/ Fredholm integral equations, the local fractional volterra/ Fredholm integro-differential equations, the local fractional variational iteration algorithms, the local fractional variational iteration algorithms with an auxiliary fractal parameter, the modified local fractional variational iteration algorithms, and the modified local fractional variational iteration algorithms with an auxiliary fractal parameter.