Open Access. Powered by Scholars. Published by Universities.®

Algebraic Geometry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Algebraic Geometry

Explorations In Well-Rounded Lattices, Tanis Nielsen Jan 2023

Explorations In Well-Rounded Lattices, Tanis Nielsen

HMC Senior Theses

Lattices are discrete subgroups of Euclidean spaces. Analogously to vector spaces, they can be described as spans of collections of linearly independent vectors, but with integer (instead of real) coefficients. Lattices have many fascinating geometric properties and numerous applications, and lattice theory is a rich and active field of theoretical work. In this thesis, we present an introduction to the theory of Euclidean lattices, along with an overview of some major unsolved problems, such as sphere packing. We then describe several more specialized topics, including prior work on well-rounded ideal lattices and some preliminary results on the study of planar …


On The Tropicalization Of Lines Onto Tropical Quadrics, Natasha Crepeau Jan 2021

On The Tropicalization Of Lines Onto Tropical Quadrics, Natasha Crepeau

HMC Senior Theses

Tropical geometry uses the minimum and addition operations to consider tropical versions of the curves, surfaces, and more generally the zero set of polynomials, called varieties, that are the objects of study in classical algebraic geometry. One known result in classical geometry is that smooth quadric surfaces in three-dimensional projective space, $\mathbb{P}^3$, are doubly ruled, and those rulings form a disjoint union of conics in $\mathbb{P}^5$. We wish to see if the same result holds for smooth tropical quadrics. We use the Fundamental Theorem of Tropical Algebraic Geometry to outline an approach to studying how lines lift onto a tropical …


Towards Tropical Psi Classes, Jawahar Madan Jan 2021

Towards Tropical Psi Classes, Jawahar Madan

HMC Senior Theses

To help the interested reader get their initial bearings, I present a survey of prerequisite topics for understanding the budding field of tropical Gromov-Witten theory. These include the language and methods of enumerative geometry, an introduction to tropical geometry and its relation to classical geometry, an exposition of toric varieties and their correspondence to polyhedral fans, an intuitive picture of bundles and Euler classes, and finally an introduction to the moduli spaces of n-pointed stable rational curves and their tropical counterparts.


Pascal's Mystic Hexagon In Tropical Geometry, Hanna Hoffman Jan 2020

Pascal's Mystic Hexagon In Tropical Geometry, Hanna Hoffman

HMC Senior Theses

Pascal's mystic hexagon is a theorem from projective geometry. Given six points in the projective plane, we can construct three points by extending opposite sides of the hexagon. These three points are collinear if and only if the six original points lie on a nondegenerate conic. We attempt to prove this theorem in the tropical plane.


On The Landscape Of Random Tropical Polynomials, Christopher Hoyt Jan 2018

On The Landscape Of Random Tropical Polynomials, Christopher Hoyt

HMC Senior Theses

Tropical polynomials are similar to classical polynomials, however addition and multiplication are replaced with tropical addition (minimums) and tropical multiplication (addition). Within this new construction, polynomials become piecewise linear curves with interesting behavior. All tropical polynomials are piecewise linear curves, and each linear component uniquely corresponds to a particular monomial. In addition, certain monomial in the tropical polynomial can be trivial due to the fact that tropical addition is the minimum operator. Therefore, it makes sense to consider a graph of connectivity of the monomials for any given tropical polynomial. We investigate tropical polynomials where all coefficients are chosen from …


An Incidence Approach To The Distinct Distances Problem, Bryce Mclaughlin Jan 2018

An Incidence Approach To The Distinct Distances Problem, Bryce Mclaughlin

HMC Senior Theses

In 1946, Erdös posed the distinct distances problem, which asks for the minimum number of distinct distances that any set of n points in the real plane must realize. Erdös showed that any point set must realize at least &Omega(n1/2) distances, but could only provide a construction which offered &Omega(n/&radic(log(n)))$ distances. He conjectured that the actual minimum number of distances was &Omega(n1-&epsilon) for any &epsilon > 0, but that sublinear constructions were possible. This lower bound has been improved over the years, but Erdös' conjecture seemed to hold until in 2010 Larry Guth and Nets Hawk Katz …


Random Tropical Curves, Magda L. Hlavacek Jan 2017

Random Tropical Curves, Magda L. Hlavacek

HMC Senior Theses

In the setting of tropical mathematics, geometric objects are rich with inherent combinatorial structure. For example, each polynomial $p(x,y)$ in the tropical setting corresponds to a tropical curve; these tropical curves correspond to unbounded graphs embedded in $\R^2$. Each of these graphs is dual to a particular subdivision of its Newton polytope; we classify tropical curves by combinatorial type based on these corresponding subdivisions. In this thesis, we aim to gain an understanding of the likeliness of the combinatorial type of a randomly chosen tropical curve by using methods from polytope geometry. We focus on tropical curves corresponding to quadratics, …


Tropical Derivation Of Cohomology Ring Of Heavy/Light Hassett Spaces, Shiyue Li Jan 2017

Tropical Derivation Of Cohomology Ring Of Heavy/Light Hassett Spaces, Shiyue Li

HMC Senior Theses

The cohomology of moduli spaces of curves has been extensively studied in classical algebraic geometry. The emergent field of tropical geometry gives new views and combinatorial tools for treating these classical problems. In particular, we study the cohomology of heavy/light Hassett spaces, moduli spaces of heavy/light weighted stable curves, denoted as $\calm_{g, w}$ for a particular genus $g$ and a weight vector $w \in (0, 1]^n$ using tropical geometry. We survey and build on the work of \citet{Cavalieri2014}, which proved that tropical compactification is a \textit{wonderful} compactification of the complement of hyperplane arrangement for these heavy/light Hassett spaces. For $g …


Adinkras And Arithmetical Graphs, Madeleine Weinstein Jan 2016

Adinkras And Arithmetical Graphs, Madeleine Weinstein

HMC Senior Theses

Adinkras and arithmetical graphs have divergent origins. In the spirit of Feynman diagrams, adinkras encode representations of supersymmetry algebras as graphs with additional structures. Arithmetical graphs, on the other hand, arise in algebraic geometry, and give an arithmetical structure to a graph. In this thesis, we will interpret adinkras as arithmetical graphs and see what can be learned.

Our work consists of three main strands. First, we investigate arithmetical structures on the underlying graph of an adinkra in the specific case where the underlying graph is a hypercube. We classify all such arithmetical structures and compute some of the corresponding …


Convexity Of Neural Codes, Robert Amzi Jeffs Jan 2016

Convexity Of Neural Codes, Robert Amzi Jeffs

HMC Senior Theses

An important task in neuroscience is stimulus reconstruction: given activity in the brain, what stimulus could have caused it? We build on previous literature which uses neural codes to approach this problem mathematically. A neural code is a collection of binary vectors that record concurrent firing of neurons in the brain. We consider neural codes arising from place cells, which are neurons that track an animal's position in space. We examine algebraic objects associated to neural codes, and completely characterize a certain class of maps between these objects. Furthermore, we show that such maps have natural geometric implications related to …


Arithmetical Graphs, Riemann-Roch Structure For Lattices, And The Frobenius Number Problem, Jeremy Usatine Jan 2014

Arithmetical Graphs, Riemann-Roch Structure For Lattices, And The Frobenius Number Problem, Jeremy Usatine

HMC Senior Theses

If R is a list of positive integers with greatest common denominator equal to 1, calculating the Frobenius number of R is in general NP-hard. Dino Lorenzini defines the arithmetical graph, which naturally arises in arithmetic geometry, and a notion of genus, the g-number, that in specific cases coincides with the Frobenius number of R. A result of Dino Lorenzini's gives a method for quickly calculating upper bounds for the g-number of arithmetical graphs. We discuss the arithmetic geometry related to arithmetical graphs and present an example of an arithmetical graph that arises in this context. We also discuss the …


Chip Firing Games And Riemann-Roch Properties For Directed Graphs, Joshua Z. Gaslowitz May 2013

Chip Firing Games And Riemann-Roch Properties For Directed Graphs, Joshua Z. Gaslowitz

HMC Senior Theses

The following presents a brief introduction to tropical geometry, especially tropical curves, and explains a connection to graph theory. We also give a brief summary of the Riemann-Roch property for graphs, established by Baker and Norine (2007), as well as the tools used in their proof. Various generalizations are described, including a more thorough description of the extension to strongly connected directed graphs by Asadi and Backman (2011). Building from their constructions, an algorithm to determine if a directed graph has Row Riemann-Roch Property is given and thoroughly explained.


On Toric Symmetry Of P1 X P2, Olivia D. Beckwith May 2013

On Toric Symmetry Of P1 X P2, Olivia D. Beckwith

HMC Senior Theses

Toric varieties are a class of geometric objects with a combinatorial structure encoded in polytopes. P1 x P2 is a well known variety and its polytope is the triangular prism. Studying the symmetries of the triangular prism and its truncations can lead to symmetries of the variety. Many of these symmetries permute the elements of the cohomology ring nontrivially and induce nontrivial relations. We discuss some toric symmetries of P1 x P2, and describe the geometry of the polytope of the corresponding blowups, and analyze the induced action on the cohomology ring. We exhaustively compute the toric symmetries of P1 …