Open Access. Powered by Scholars. Published by Universities.®

Algebra Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Algebra

Developments In Multivariate Post Quantum Cryptography., Jeremy Robert Vates Aug 2018

Developments In Multivariate Post Quantum Cryptography., Jeremy Robert Vates

Electronic Theses and Dissertations

Ever since Shor's algorithm was introduced in 1994, cryptographers have been working to develop cryptosystems that can resist known quantum computer attacks. This push for quantum attack resistant schemes is known as post quantum cryptography. Specifically, my contributions to post quantum cryptography has been to the family of schemes known as Multivariate Public Key Cryptography (MPKC), which is a very attractive candidate for digital signature standardization in the post quantum collective for a wide variety of applications. In this document I will be providing all necessary background to fully understand MPKC and post quantum cryptography as a whole. Then, I …


Application Of Symplectic Integration On A Dynamical System, William Frazier May 2017

Application Of Symplectic Integration On A Dynamical System, William Frazier

Electronic Theses and Dissertations

Molecular Dynamics (MD) is the numerical simulation of a large system of interacting molecules, and one of the key components of a MD simulation is the numerical estimation of the solutions to a system of nonlinear differential equations. Such systems are very sensitive to discretization and round-off error, and correspondingly, standard techniques such as Runge-Kutta methods can lead to poor results. However, MD systems are conservative, which means that we can use Hamiltonian mechanics and symplectic transformations (also known as canonical transformations) in analyzing and approximating solutions. This is standard in MD applications, leading to numerical techniques known as symplectic …


Full Newton Step Interior Point Method For Linear Complementarity Problem Over Symmetric Cones, Andrii Berdnikov Jan 2013

Full Newton Step Interior Point Method For Linear Complementarity Problem Over Symmetric Cones, Andrii Berdnikov

Electronic Theses and Dissertations

In this thesis, we present a new Feasible Interior-Point Method (IPM) for Linear Complementarity Problem (LPC) over Symmetric Cones. The advantage of this method lies in that it uses full Newton-steps, thus, avoiding the calculation of the step size at each iteration. By suitable choice of parameters we prove the global convergence of iterates which always stay in the the central path neighborhood. A global convergence of the method is proved and an upper bound for the number of iterations necessary to find ε-approximate solution of the problem is presented.